A comparative study of principal component regression and partial least squares regression with application to FTIR diabetes data

Venkatesan, P and Dharuman, C and Gunasekaran, S (2011) A comparative study of principal component regression and partial least squares regression with application to FTIR diabetes data. Indian Journal of Science and Technology, 4 (7). pp. 740-746. ISSN Print 0974-6846 | Electronic 0974-5645

[thumbnail of 201131.pdf] Archive
201131.pdf - Published Version

Download (2MB)

Abstract

In recent years, Fourier Transform Infrared (FT-IR) spectroscopy has had an increasingly important role in the field of pathology and diagnosis of disease states. The principal component regression (PCR) and the partial least squares regression (PLS) are the often proposed methods and widely used in FTIR data analysis, when the number of explanatory variable is relatively large in comparison to the samples as the least squares estimator may fail in such situations. They provide biased estimators with the relatively smaller variation than the variance of the least squares estimators. In this paper, a FTIR diabetes dataset is used in order to examine the performance of the two biased regression models on prediction. The conclusion is that for prediction PCR and PLS provides similar results which require substantial verification for any claims as to the superiority of any of the two biased regression methods.

Affiliation: ICMR-National Institute for Research in Tuberculosis
Item Type: Article
Uncontrolled Keywords: Fourier Transform Infrared, Principal Component Regression, Partial Least Square, Diabetes Data.
Subjects: Tuberculosis > Biostatistics
Divisions: Statistics
Depositing User: Dr. Rathinasabapati R
Date Deposited: 20 Jun 2022 10:27
Last Modified: 20 Jun 2022 10:27
URI: http://eprints.nirt.res.in/id/eprint/1104

Actions (login required)

View Item View Item