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Most of the studies have been widely studied between breast cancer and risk factor using the classical way of statistical 
methods. This paper aims to implement a class of flexible parametric survival models through accelerated failure time 
models for identifying risk factors for breast cancer time to death among South India women. This study also attempts 

to explore the survival experience of breast cancer patients. Since the death due to severity of the stages varies with age; the age is broadly 
classified into two groups <50 years & 50 years.  The survival experiences between these age groups are presented using Kaplan-Meier survival 
curves and there is no significant difference between groups. However, the stages differ significantly in each group. The accelerated failure time 
(AFT) models using Exponential, Weibull, Gamma, Log logistic and lognormal were explored and compared by using the AIC and deviance. The 
Gamma and log normal models produced similar results.
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1. Introduction
There are two types of regression models that have been developed for 
time to event survival data. The first model is based on the hazard func-
tion in patient groups compared to a baseline population by means 
of a multiplicative effect on hazards scale. The multiplicative factor is 
assumed to be constant over time, in which case the model forces the 
hazards in the different patient groups to be proportional(Cox 1972). 
The second model is applied for modeling the survival time directly 
along with covariates assumed to act multiplicatively on the time scale. 
The accelerated failure time (AFT) model is of the second type and it 
is a class of linear regression model in which the response variable is 
the logarithm or a known monotone transformation of a failure time 
(Kalbfleisch and Prentice, 1980). When using semi-parametric models 
for the analysis of time to event data, it is needed to provide a reduced 
set of assumption for forming the hazard ratio from the coefficients 
that can be easily interrupted and clinically meaningful (Richard and 
Nelson, 2002). 

The AFT model is not frequently used model to analyze survivorship 
data, but it offers a potentially useful statistical approach which is 
based upon the survival curve rather than the hazard function. Wei 
(1992) suggested that since the parameters in the AFT models are 
interpreted as effects on the time scale, they may be more easily un-
derstood than the hazard ratios. We desire to emphasize that all AFT 
models are named for the distribution of T rather than the distribution 
of Tlog . The reason for allowing a different distribution assumption 
is that they have different implications for the shape of hazard function. 
Three parametric regression models, namely the exponential, gamma 
and Weibull are used to compare a contrast the analysis of right cen-
sored cancer trail data with covariate effects, through a proportional 
hazards interpretation (Hayat et al., 2010). The other two parametric 
survival models, the log-logistic and log normal are to be described in 
the other way to proportional hazards. 

2. Statistical Methods
Parametric Survival time model have been viewed excessively in 
many texts (Cox and Oakes,1984; Wei, 1992; Lee, 1992; Anderson et 
al., 1993; Klein and Moeschberger, 1997 and Hosmer and Lemeshow, 
1999). Hosmer and Lemeshow cautioned that while using parametric 
form of the hazard instead of using semi parametric form of the haz-
ard. A recent paper by Orbe et al., (2002) compares both the Cox and 
AFT models and discussed the advantages of AFT models with their 
limitations.

Let T
i
 be a random variable denoting the failure time for the ith subject, 

and let 
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 be the values of p covariates for that same subject. The model 
is then
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where ιε is a random disturbance term, 
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, and σ
are parameters to be estimated, (.)S0 is a known baseline survival, 

sTi '  are actual survival time some times observed, σ  is a scale 
parameter and sxi '  

are fixed 1×p  vector of covariates. The σ  
can be omitted, which requires that the variance of ε

i
 be allowed to be 

different from 1. But it is simpler to fix the variance of ε
i
 at 1 and let σ 

change. All AFT models are named for the distribution of T rather than 
the distribution of ε or log T. The reason for allowing different distribu-
tion assumptions is that they have different implications for the shapes 
of hazard function. 

In this application to Cancer data, the age and stages are considered 
as important covariates based on previous studies. The stages of the 
disease are classified based on the five point scale (Engel et al., 2003; 
Michaelson et al., 2002). The age is classified into less than 50 years and 
more than 50 years as per Robb et al., (2007). Moreover, in breast cancer 
age is an important factor and 70% of the women diagnosed were over 
the age 50 (Robb et al., 2007). In order to determine the most suitable 
distribution to the survival periods, the AFT form of the Exponential, 
Gamma, Weibull, Lognormal, and Log-logistic distributions were used. 
The models obtained through these five were compared using Akaike 
Information Criteria (AIC), and -2 log likelihood (-2LL).

Application to Breast Cancer Data
The database consists of 368 breast cancer women patients diagnosed 
at Cancer Institute (WIA), Chennai, India and follow-up period up to 120 
months. The event of interest was time to death. The demographic and 
disease characteristics of the patients are given in table 1 

Table 1: Classification of death according to Stages and Age group
Stages Age groups

Stage2B
N (%)

Stage3A
N (%)

Stage3B
N (%)

Age <50 years
N (%)

Age ³ 50 years
N (%)
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Death 
Status 
Alive 
Dead

61 (55)
49 (45)

72 (56)
56 (44)

48 (37)
82 (63)

115 (53)
103 (47)

66 (44)
84 (56)

Total 110 128 130 218 150
 
From the table1, we see that death increases with the severity of stage 
and age. 

Figure 1: Kaplan-Meier graph of the survival curves for 
different age groups
 
In the Kaplan-Meier graph, is seen that the estimated survival proba-
bility of the less than 50 group patients was higher than the one es-
timated in the 50-and-above group (Figure 1). The difference was not 
significant using the log rank test. 

The mean estimates (Table 2) of stage2B and 3A are related with each 
other than compared to stage 3B. Though the Stages 2B and 3A are 
similar with respect to the mean in estimates, they are statistically sig-
nificant differences based on the log rank test (p =0.001). The median 
estimates are also presented for all the three stages in the Table 2 and 
this is also imitating the same message when compared to mean esti-
mates of stages. 

Table 2. Means for Survival Time for different stages

Mean
Estimate SE 95% CI

Stage 2B 106.729 5.998 94.974 118.485
Stage 3A 110.488 5.915 98.895 122.081
Stage 3B 79.655 5.776 68.335 90.975
Overall 99.488 3.559 92.512 106.463
log rank test (p =0.001)

 

From the above Kaplan-Meier curves (Figure 2A&B), we note that sub-
stantial differences between the stages exists. 

The parameter estimates, standard errors, and indicator for p-values are 
given in Table 3. Here, we see that patients with stage 3B and stage3A 
disease do significantly worse than patients with stage 2B disease. 

When analyzing the survival periods using parametric models, the age 
and stage variables are taken as the covariate. The parameter obtained 
as a result of the analysis, the -2LL and AIC values are presented in Table 
3.

Table 3. Parameter Estimates (with SE) for the Effects of Stage and Age on Survival for 
Breast Cancer Patients, Modelling Time Directly Assuming the following Distributions 
Variable Exponential Weibull log Normal Log Logistic Gamma

Age -0.006 0.008 -0.006 0.009 -0.003 0.009 -0.002 0.009 -0.001 0.008
Stage 3A -0.291* 0.092 -0.308* 0.108 -0.392* 0.122 -0.393* 0.114 -0.857 0.194
Stage 3B  0.358* 0.161  0.413* 0.206  0.430* 0.226  0.447* 0.213 -0.093 0.491
Constant  5.480 0.384  5.536 0.429  5.051 0.449  4.960 0.446  5.019 0.507
-2LL 950.83 946.41 918.34 928.88 922.05

 AIC 957.74 955.23 929.76 939.12 928.05

* significant at 5% level 

As lower values of AIC and -2LL suggest a better model and the mod-
el obtained by using lognormal and Gamma model are almost similar. 
These models have lower AIC and -2LL for both age groups as well as 
stages. 

The Gamma model is the more suitable model and the other way deci-
sion based on -2LL, the log normal is the most suitable model. 

Some of the supportive evidence of hazards function graphs (Figure 
3A) for age and stage are created in accordance with Lognormal, Log 
logistic, Weibull, Gamma distributions and are given in figure 3A & 
3B respectively. When the hazard function graphs are examined, it is 
seen that the mortality risk in the <50 age group is lesser than ³ 50 age 
group(Figure 3A). 
Also the hazard function graphs obtained as a result of the analyses, it 
is seen that the mortality risk of the stages 2B and 3A group patients 
are lower than the stage3B group patients (Figure 3B).

The time ratio (TR) values are calculated as a result of the AFT function 
and their confidence intervals are given (Table 4). The time ratio values 
obtained for all distributions related to the age are not statistically sig-
nificant (p>0.05). This shows that the age does not make-believe as a 
risk factor for breast cancer patients. 

Table 4. Time Ratio (with SE) for the Effects of Age on Survival for 
Breast Cancer Patients.

Distribution Time 
Ratio SE Pvalue 95% Confidence 

Interval
Gamma 0.994 0.009 0.464 0.976 1.011 
Exponential 0.990 0.007 0.221 0.975 1.005
Weibull 0.989 0.009 0.245 0.973 1.007
log Normal 0.993 0.009 0.422 0.975 1.010
Log Logistic 0.993 0.009 0.433 0.975 1.011
 
Discussion
The AFT models are compared for time to death in breast cancer data 
using Exponential, Weibull, Gamma, Log logistic and lognormal mod-
els. These models illustrate age is not a risk factor but stages are found 
to be a risk factor. It is concluded that Gamma and log normal models 
are identified as suitable models based on the lower values of AIC and 
deviance. The findings closely relate with other findings like (Robb et 
al., 2007; Hayat, et al., 2010). 
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