
INDIAN JOURNAL OF APPLIED RESEARCH  X 497 

Volume : 4 | Issue : 8  | August 2014 | ISSN - 2249-555XReseaRch PaPeR

Bayesian Cox Model with Categorical Predictors for 
Time to Event Breast Cancer Data

Leo Alexander T Pari Dayal L
Loyola College, Chennai DRBCCC Hindu College, Chennai 

Ponnuraja C Venkatesan P
NIRT(ICMR), Chennai NIRT(ICMR), Chennai

Keywords Survival data, Cox PH Model, Bayesian approach, Gibbs sampler

Medical Science

ABSTRACT Survival analysis has become a standard tool for modeling cancer trial data when the event of interest is 
“time to event”. Cox regression, which implements the proportional hazards model, is designed for anal-

ysis of time until an event or time between events, introduced by Cox (1972) in order to estimate the effects of differ-
ent covariates influencing the time-to-event data. This model has been used extensively in time to event of cancer trial 
data for given categorical predictor variables. The Bayesian analysis has advantageous in dealing with small sample of 
censored data more than a frequentist method. The main objective of this article is to apply a Bayesian Cox model and 
is being compared with a frequentist method. Gibbs sampling technique is used to assess the posterior quantities of 
interest and to avoid the complexity in calculations. The posterior is arrived using SAS package. 

INTRODUCTION
In many cancer trials, the applications of proportional haz-
ards model is often a more realistic model than the other 
survival models in the analysis of time to event data.  The 
Cox proportional hazards model constructs an analytical 
model for time-to-event breast cancer data. The model 
produces a survival function that predicts the probability 
that the event of interest has occurred at a given time t for 
given values of the predictor variables. The predictors are 
in nature of categorical type, shape of the survival function 
and the regression coefficients for the predictors are esti-
mated from observed subjects. 

To describe the distribution of survival time has assumed 
that the hazard function is completely specified given the 
baseline hazard function and the values of the covariates. 
In cancer studies, there may be factors other than the 
measured covariates that significantly affect the distribu-
tion of survival time. This condition is often referred to as 
heterogeneity of the subjects. Among the early papers of 
Vaupel, Manton and Stallard (1979) who used the concept 
of to describe the differences in survival time apparently 
among similar individuals. Hougaard (1995) presented an 
overview of the models, proposed for the use in time to 
event data. Aalen (1994) also provides a relatively non-
technical summary with a focus on fully parametric models. 
Klein and Moeschberger (1997) presented methods based 
on incorporating in proportional hazards models and its 
technical details. 

There are two approaches to a Bayesian analysis of the 
Cox Proportional Hazards Model (PHM) .This is based on 
the partial likelihood L(β; y) combined with a prior π(β) 
which produces the posterior π(β|y). The baseline hazard 
is left unspecified. Inference is made from samples drawn 
from π(β|y). Thus the partial likelihood is treated as a like-
lihood function just as in the classical analysis. The basic 
idea of a model is to incorporate a comparison between 
Bayesian Cox PHM with non Bayesian approach of Cox 
PHM. 

which may be re-expressed as 

                                                                      (1)

                                                                      (2)

Using the relationship between the survival and hazard 
function, it has the conditional survival function as 

                                                                   (3)

and the conditional likelihood as

                                                                   (4)

where there are i clusters, thi one being of size iη and g 
and b represent baseline hazard and regression param-
eters, respectively. On substitution it gives

                                                                       
where,

                                                                     (5)

In the Bayesian point of view, the variance “t”, would be 
expressed as a hyperparameter and prior knowledge con-
cerning its value which will be summarized in a hyper prior 
distribution. 

GIBBS SAMPLER ALGORITHM
The Gibbs sampler technique is one of the best known 
MCMC sampling algorithms in the Bayesian computa-
tional methods. The Gibbs sampler by Grenander (1983), 
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the prescribed term is introduced by Geman and Geman 
(1984). Gibbs sampling is the landmark in problem of 
Bayesian inference (Gelfand and Smith, 1991). The Gibbs 
sampler tutorial is provided by Casella and George (1992). 

Let ( )'p,...,, θθθθ 21=  be a p-dimensional vector of parameters 
and let ( )D|θπ  be its posterior distribution given the data 
D. Then, the fundamental format of the Gibbs sampler is 
given as 

Step 1. Select an arbitrary starting point

 
Step 3. Set 1+= ii , and go to step 2
Each component of θ is in the natural order and a cycle 
in this scheme requires generation of p random variates. 
Gelfand and Smith (1990) show that under certain regular-
ity conditions, the vector sequence 







 = ,...,i,i 21θ has a station-

ary distribution ( )D|θπ . The performance of a Metropolis-
Hastings algorithm depends on the choice of a proposal 
density q. The Metropolis-Hastings algorithm can be used 
within the Gibbs sampler when direct sampling from the 
full conditional posterior is difficult. 

PRIOR
Prior elicitation perhaps plays the most crucial role in 
Bayesian inference.  Survival analysis with covariates, 
the most popular choice of informative prior for b is 
the normal prior, and the most common choice of non 
informative prior for b is the uniform prior. The non-in-
formative and improper priors may be useful and easier 
to specify for certain problems, but they cannot be used 
in all applications, such as model selection or model 
comparison, as it is well known that proper priors are 
required to compute Bayes factors and posterior model 
probabilities (Ibrahim, et al., 2004). Also non informative 
priors may cause instability in the posterior estimates 
and lead to convergence problems for the Gibbs sam-
pler. Moreover, non informative prior do not make use 
of real prior information that one may use for a specific 
application.   

APPLICATION 
We consider the database consisting of 368 breast can-
cer women patients diagnosed at Cancer Institute (WIA), 
Chennai, India and follow-up period up to 180 months, 
represented by the variable Time. The event of interest 
was time to death in months. A censoring indicator varia-
ble, Status, is created from the data, with the value 0 indi-
cating a censored time and the value 1 indicating an event 
time. 

Overall 187(51%) cases have experienced the event and 
63% of 130 are of stage 3B cases. 

The demographic and disease characteristics of the pa-
tients are given in table 1

Table 1: Classification of death according to  Stages and 
Age group 

Stages Age groups

Status
Stage2B

N (%)

Sta-
ge3A

N (%)

Stage3B

N (%)

Age <50 
years

N (%)

Age > 50 
years

N (%)

Alive 

Dead

61 (55)

49 (45)

72 (56)

56 (44)

48 (37)

82 (63)

115 (53)

103 (47)

66 (44)

84 (56)

Total 110 128 130 218 150

From the table1, we see that death increases with the 
severity of stages and age. The event experienced cases 
among age group in more than 50 years is higher than the 
less than 50 years (Pari Dayal et al., 2013). The linear pre-
dictor is set equal to the intercept in the reference group 
(stage = 3); this defines the baseline hazard. The corre-
sponding distribution of survival time is Gamma distribu-
tion (Cox and Oakes, 1984).  

The Cox model with a parameter for each individual is us-
ing for identifying the risk variables for breast cancer pa-
tients. Here, the age and stages are considered as risk 
factors of categorical predictor variables. We analyzed the 
data assuming a Weibull distribution for the survivor func-
tion, and including random effect  for each patient. 
The hazard model is as follows

where AGEi has two levels(Age <50yrs(=1 as reference) 
and Age>50yrs), and stage has 3-level of categorical pre-
dictor covariates (stage2B = 1(as reference), stage 3A = 2 
and stage 3B = 3) 1,2,3) (k  STAGEik = are dummy variables 
representing the 3-level factor for underlying stage. 

Cox Proportion Hazards regression
The Cox proportional hazards model to these data, varia-
bles age group and stages, which are categorical variables, 
are also take part as stratified aspects. By default, they 
categorized by using the reference coding with the last 
category as the reference category. However, it can explic-
itly specify the reference category of our own preference. 
Here, Age Group(less than 50 years=0) is chosen as the 
reference category for age, stage (stage2B=1) is chosen as 
the reference category for stages of cancer.  Coded vari-
ables are resulted (table below “Class Level Information”) 
with the reference coding has zero and the rest are having 
one for all variables. Since age group variable is binary, the 
variable has a value of 0 for the reference category.  The 
variable stage has three categories and is represented by 
two dummy variables.

Class Level Information
Class Value Design Variables

Age group
0 0 Reference
1 1

stage
1 0 0 Reference
2 1 0
3 0 1

The test results of individual model effects are shown in ta-
ble2. There is a strong prognostic effect of stages on pa-
tient’s survivivorship (p0.0007), and the survival times for 
patients of different age groups play a role other way that 
it differ non significantly (0.4083).  In the Cox proportional 
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hazards model, the effects of the covariates are to act mul-
tiplicatively on the hazard of the survival time, and there-
fore it is a little easier to interpret the corresponding haz-
ard ratios than the regression parameters. For a categorical 
variable parameter, the hazard ratio is the ratio of the haz-
ard rates between the given category and the reference 

category. The hazard rate of age group of less than 50 
years is 1.137 times more that of Age Group more than 50 
years, the hazard rate of stage of 3A is 0.951 times more 
that of stage2B, and the hazard rate of stage3B is 1.715 
times more that of stage2B. Moreover there is evidence 
that the stage influences the event of interest. 

Table4: Initial Values of the Chain on each Parameter

age1 0.128 id41 -0.612 id84 -0.665 id127 0.2283 id170 0.381 id213 -1.0411 id256 -0.901 id299 0.596 id342 -0.586 

sta2 -0.027 id42 -1.249 id85 0.169 id128 0.1209 id171 -0.556 id214 0.4951 id257 -0.119 id300 0.252 id343 -1.098

sta3 0.764 id43 0.038 id86 -0.769 id129 0.5169 id172 -0.242 id215 -0.0492 id258 -0.248 id301 -0.617 id344 0.3766

id1 -0.617 id44 -0.807 id87 -1.226 id130 0.5959 id173 0.215 id216 0.3108 id259 0.495 id302 0.449 id345 -0.436

id2 -0.358 id45 0.657 id88 -1.159 id131 -1.0134 id174 0.618 id217 0.2797 id260 -0.574 id303 -0.617 id346 -0.17

id3 -0.258 id46 -0.752 id89 0.331 id132 0.3665 id175 -0.617 id218 0.5675 id261 0.451 id304 0.115 id347 0.2285

id4 0.088 id47 -0.689 id90 -0.491 id133 -0.4832 id176 -0.798 id219 0.6271 id262 -1.126 id305 -0.361 id348 0.5914

id5 -0.807 id48 0.537 id91 -0.673 id134 -1.3184 id177 -0.501 id220 0.3665 id263 0.419 id306 0.01 id349 0.3008

id6 0.21 id49 -0.059 id92 -0.441 id135 -0.9173 id178 -0.65 id221 -0.6051 id264 0.572 id307 0.464 id350 -0.496

id7 -0.65 id50 -0.689 id93 0.539 id136 -0.5308 id179 0.637 id222 0.2683 id265 0.677 id308 -1.226 id351 0.3046

id8 0.513 id51 -1.226 id94 0.104 id137 -0.0147 id180 0.533 id223 0.4812 id266 -0.032 id309 0.667 id352 -0.59

id9 0.669 id52 0.524 id95 -0.66 id138 -0.5777 id181 0.056 id224 -0.6051 id267 0.173 id310 0.661 id353 0.6093

id10 0.646 id53 -0.496 id96 0.596 id139 -0.405 id182 -1.087 id225 0.3792 id268 0.077 id311 -1.085 id354 -0.952

Table2: Cox PH Model: Parameters Estimates with Reference Coding

Parameter levels
Parameter

Estimate

Standard

Error
Chi-Square P

Hazard

Ratio

Wald

ChiSq P

age group 1 0.12805 0.15485 0.6838 0.4083 1.137 0.68 0.4083

stage3A 2 -0.05045 0.19651 0.0659 0.7974 0.951 14.45 0.0007

stage3B 3 0.53946 0.18359 8.634 0.0033 1.715

-2LL 2027.348

The further illustrate the use of the backward elimination 
process to identify the effects that affect the survivorship 
of the breast cancer patients. It is specified to carry out 
the backward elimination which specifies the significant 
level for retaining the effects in the model. Hence, it re-
sults of the backward elimination process that it retained 
the stage and eliminated the age group subsequently.

Bayesian Cox Proportion Hazards Regression
Cox Proportion Hazards Regression uses the partial likeli-
hood of the Cox model as the likelihood and generates a 
chain of posterior distribution samples by the Gibbs Sam-
pler. 

The Bayesian Cox PH model invokes the Bayesian analy-
sis with generating samples by Gibbs sampler to maintain 
reproducibility to accumulate the posterior distribution 
samples using the data. By default, a uniform prior distri-
bution is assumed on the regression coefficient Group. The 
uniform prior is a flat prior on the real line with a distribu-
tion that reflects ignorance of the location of the param-
eter, placing equal probability on all possible values the 
regression coefficient can take. Using the uniform prior, it 
would expect the Bayesian estimates to resemble the clas-
sical results of maximizing the likelihood (see: Table2).  It 
should make sure that the posterior distribution samples 
have achieved convergence before using them for Bayes-
ian inference. 

This analysis generates a posterior chain of 10,000 itera-
tions after 2,000 iterations of burn-in and it also displayed 
the names of the parameters and their corresponding ef-
fects and categories. Further it computes the maximum 
likelihood estimates of regression parameters are depicted 
in table3. These estimates are used as the starting values 
for the simulation of posterior samples. 

Table3: Maximum Likelihood Estimates

Parameter DF Estimate Standard 
Error

95% Confidence 
Limits

a1 1 0.128 0.1549 -0.1755 0.4315

sta2 1 -0.0503 0.1965 -0.4354 0.3349

sta3 1 0.5394 0.1836 0.1796 0.8993

Theta 1 0.0001 . . .

 
Summary statistics, convergence diagnostics, and diag-
nostic plots are provided for each parameter of categori-
cal predictors. Summary statistics of the posterior samples 
are shown in Table5. These results are quite comparable to 
the classical results based on maximizing the likelihood as 
shown in Table3, since the prior distribution for the regres-
sion coefficients is relatively flat. The table4 results the ini-
tial values of the chain on each parameters. 
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id11 0.34 id54 0.575 id97 -0.628 id140 -0.6375 id183 -0.65 id226 0.2173 id269 -0.501 id312 -0.605 id355 -0.98

id12 -0.723 id55 0.252 id98 0.304 id141 0.4011 id184 -0.605 id227 -0.6596 id270 0.461 id313 -0.59 id356 0.1387

id13 0.532 id56 0.485 id99 0.66 id142 0.3313 id185 0.669 id228 0.4011 id271 0.404 id314 0.3 id357 0.5319

id14 -0.655 id57 0.49 id100 -0.057 id143 -0.8499 id186 0.401 id229 0.367 id272 0.683 id315 -1.041 id358 -0.578

id15 -0.738 id58 0.661 id101 0.313 id144 -0.5308 id187 -0.188 id230 0.1708 id273 -0.557 id316 0.168 id359 0.5563

id16 -0.425 id59 -0.617 id102 -0.604 id145 0.1013 id188 -0.617 id231 -0.6051 id274 0.505 id317 0.455 id360 0.4011

id17 0.422 id60 -0.47 id103 -0.605 id146 -0.6503 id189 -0.013 id232 0.6683 id275 -0.59 id318 0.688 id361 -0.578

id18 0.481 id61 0.199 id104 -0.066 id147 -0.0093 id190 -0.638 id233 0.5236 id276 -0.063 id319 0.208 id362 0.464

id19 0.048 id62 0.641 id105 0.449 id148 -0.6174 id191 -0.003 id234 0.4812 id277 0.558 id320 -0.59 id363 0.4554

id20 -0.162 id63 0.173 id106 0.641 id149 -0.6596 id192 -0.605 id235 0.6107 id278 -0.476 id321 0.309 id364 0.451

id21 -1.052 id64 0.388 id107 0.49 id150 0.5279 id193 0.519 id236 0.4701 id279 -0.441 id322 0.539 id365 0.5964

id22 -0.119 id65 -0.104 id108 0.574 id151 -0.6785 id194 0.439 id237 -0.5672 id280 0.37 id323 -1.027 id366 -0.501

id23 -0.46 id66 -0.665 id109 0.455 id152 0.6242 id195 0.197 id238 -0.6503 id281 -1.041 id324 -0.655 id367 -0.189

id24 -0.127 id67 -0.48 id110 0.502 id153 0.6683 id196 -0.119 id239 0.123 id282 -0.027 id325 0.595 id368 0.5737

id25 -1.013 id68 -0.605 id111 -1.159 id154 -0.6728 id197 -0.154 id240 0.0557 id283 0.578 id326 -0.655 Theta 1

id26 -1.226 id69 -0.566 id112 0.059 id155 -1.174 id198 0.171 id241 0.0889 id284 -0.617 id327 -0.625

id27 0.575 id70 0.296 id113 -1.249 id156 -0.6728 id199 -0.638 id242 0.401 id285 -0.617 id328 0.62

id28 -0.752 id71 0.668 id114 -0.66 id157 -0.6051 id200 0.016 id243 -0.3692 id286 -0.697 id329 -0.784

id29 -0.137 id72 -0.703 id115 -0.679 id158 -0.6375 id201 0.49 id244 -0.5777 id287 0.296 id330 -0.578

id30 -1.318 id73 0.179 id116 -0.752 id159 -0.0241 id202 -0.617 id245 0.4038 id288 0.636 id331 -0.607

id31 0.301 id74 0.086 id117 -1.118 id160 -0.5556 id203 0.524 id246 -0.6074 id289 -1.002 id332 -1.002

id32 -0.807 id75 -0.66 id118 -0.605 id161 -0.7136 id204 0.383 id247 -0.6051 id290 -0.665 id333 0.102

id33 0.539 id76 0.237 id119 0.687 id162 -0.2241 id205 0.377 id248 -0.6653 id291 -0.567 id334 -0.455

id34 0.388 id77 -0.607 id120 -0.97 id163 -0.6247 id206 -1.052 id249 0.3716 id292 -0.556 id335 -0.258

id35 0.126 id78 0.252 id121 -0.722 id164 0.6076 id207 0.048 id250 -0.0159 id293 -0.655 id336 -0.129

id36 -1.226 id79 -0.755 id122 -0.251 id165 -0.5556 id208 0.629 id251 0.4384 id294 -0.605 id337 0.484

id37 -0.466 id80 -0.48 id123 0.142 id166 -0.3926 id209 0.188 id252 -0.6051 id295 -0.011 id338 0.137

id38 -0.807 id81 -0.531 id124 -0.582 id167 0.2131 id210 -0.554 id253 0.691 id296 0.29 id339 0.381

id39 -0.752 id82 -0.574 id125 -0.7 id168 -0.1541 id211 -1.041 id254 0.264 id297 -1.126 id340 -0.003

id40 -0.612 id83 -1.002 id126 -0.703 id169 0.1512 id212 -0.605 id255 -0.5952 id298 0.288 id341 0.449

With autocorrelations retreating quickly to 0 and large effective sample sizes (Table5) (both diagnostics indicate a reasonably 
good mixing of the Markov chain. 

Table5: Posterior Summaries and Intervals, Posterior Autocorrelations and Effective Sample Sizes

Param N Mean SD 95% HPD  
Interval

ESS
Efficiency

Lag 1 Lag 5 Lag 10 Lag 50 Time

Age>50 10000 0.107 0.160 -0.204 0.423 0.939 0.741 0.550 0.079 265 37.67 0.026

Stage3A 10000 -0.027 0.201 -0.431 0.359 0.950 0.776 0.608 0.0924 248 40.27 0.024

stage3B 10000 0.609 0.195 0.2383 1 0.943 0.75 0.568 0.0506 245 40.84 0.024

id2 10000 -0.081 0.33 -0.791 0.5 0.907 0.62 0.395 0.0297 393 25.46 0.039

id4 10000 -0.040 0.280 -0.545 0.574 0.955 0.800 0.646 0.2458 92 108.7 0.009

Theta 10000 0.115 0.081 0.0417 0.31 0.984 0.979 0.976 0.9473 22 455.4 0.002

Trace, autocorrelation and density plots are produced for 
each of the four parameters θ in figure1 also confirm the 
convergence of the Markov chain.  It is imperative that 
these are examined before any conclusions are drawn from 

the simulated posterior samples. The results shown on the 
table6 are almost perfect. The trace plot show excellent 
mixing, the autocorrelation decreases to near zero, and the 
density is bell-shaped. The trace plots are centered near 
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their respective posterior mean and later the posterior 
space with small fluctuations. For the theta which corre-
sponds to the all group, the trace plot is centered near the 
posterior mean. Samples in both tails are covered. These 
results exhibit convergence of the Markov chain to its sta-
tionary distribution. 

Figure1: Confirmation of convergence by 
Trace, autocorrelation and density plots

The first hazard ratio table compares the hazards between 
the age group less than 50 years and more than 50 years. 
Summaries of the posterior distribution of the correspond-

ing hazard ratio are shown in Table 6. There is a 95% 
chance that the hazard ratio of the age group less than 
50 years and more than 50 years lies between 0.655 and 
1.244. The second hazard ratio tables for three types of 
combinations with three different pairs of stages are being 
compared. Assesses the change of hazards for each pairs 
of stages and compares the stage2A vs Stage3A, stage2A 
vs Stage3B and stage3A vs Stage3B. Hazards ratio for 
Stage2A vs Stage3A lies between 0.694 and 1.538, haz-
ards ratio for stage2A vs Stage3B lies between 0.369 and 
0.795. Similarly the hazards ratio for stage3A vs Stage3B 
lies between 0.371 and 0.767. Also it reports the simple 
statistics, percentiles, credible intervals, and high probabili-
ty density (HPD) intervals for each of the parameters based 
on the posterior sample of 10000. Because the priors used 
are non-informative, the mean, standard deviation and 
credible interval should be fairly close to the correspond-
ing maximum likelihood estimates (estimate, standard er-
ror, 95% CI)

Table6: Hazard Ratios for age group

Description N Mean
Percentiles /Quantiles Posterior Intervals

SD 25% 50% 75% 95% Equal-Tail 
Interval 95% HPD Interval

Age<50 vs >50 10000 0.9099 0.149 0.802 0.893 1.001 0.655 1.244 0.644 1.215

Hazard Ratios for stage

sta 1 vs 2 10000 1.0485 0.2138 0.889 1.035 1.174 0.694 1.538 0.631 1.448

sta 1 vs 3 10000 0.554 0.1085 0.477 0.547 0.623 0.369 0.795 0.359 0.771

sta 2 vs 3 10000 0.5383 0.1011 0.464 0.529 0.594 0.371 0.767 0.349 0.729

Discussion
Bayesian Cox PH model proposed to fit flexible survival 
models for non-informative censored breast cancer data. 
Using SAS University Edition Virtual Application Software, 
we presented the comparable results as compared with 
the results of the seminal paper (Pari Dayal et al. 2013). 
Draw information based on different types of deviance 
criteria along with various additional supportive measures. 
The results which are presented in this paper followed the 
same trend and in fact it showed the reality. Results in all 
tables and all visual approximate estimates which are pre-
sented in this paper are consistent. The DIC is a suitable 
device to draw conclusions. Before drawing inferences 
from the posterior sample, we should examine the trace, 
autocorrelation and density plots for each parameter to 
be content that the underlying chain has converged. The 
plots for the two parameters shown the mixing in the chain 
is acceptable, although we notice long correlation times. 
The hazard ratio statement delivers the Bayes solution cor-
responding to the previous classical analysis in Table 2. 

These results we can also use post sample to assess the 
posterior probability that the HR for age vs stage after the 
event of interest is <1. The probability is over 99%.

However, an enormous statistical knowledge is required 
for it to be used correctly. This approach provides an alter-
native validation that could be used to confirm results of 
‘frequentist’ approach. Bayesian inference has a number of 
advantages over the frequentist approaches, mostly in the 
flexibility of model-building for time to event breast cancer 
survival data. In addition, for many models, ‘frequentist’ in-
ference can be obtained as a special case of Bayesian in-
ference with the use of non-informative priors (Ibrahim et 
al., 2001). The Bayesian approach enables us to formulate 
accurate inference based on the posterior distribution for 
any sample size, whereas the ‘frequentist’ approach relies 
heavily on the large sample approximation. The most im-
portant concern is that there is a risk involved in the erro-
neous usage of the Bayesian methods which could lead to 
improper data analysis
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