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Survival analysis has become a standard tool for modeling cancer trial data when the event of interest is
“time to event”. Cox regression, which implements the proportional hazards model, is designed for anal-
ysis of time until an event or time between events, introduced by Cox (1972) in order to estimate the effects of differ-
ent covariates influencing the time-to-event data. This model has been used extensively in time to event of cancer trial
data for given categorical predictor variables. The Bayesian analysis has advantageous in dealing with small sample of
censored data more than a frequentist method. The main objective of this article is to apply a Bayesian Cox model and
is being compared with a frequentist method. Gibbs sampling technique is used to assess the posterior quantities of
interest and to avoid the complexity in calculations. The posterior is arrived using SAS package.

INTRODUCTION

In many cancer trials, the applications of proportional haz-
ards model is often a more realistic model than the other
survival models in the analysis of time to event data. The
Cox proportional hazards model constructs an analytical
model for time-to-event breast cancer data. The model
produces a survival function that predicts the probability
that the event of interest has occurred at a given time t for
given values of the predictor variables. The predictors are
in nature of categorical type, shape of the survival function
and the regression coefficients for the predictors are esti-
mated from observed subjects.

To describe the distribution of survival time has assumed
that the hazard function is completely specified given the
baseline hazard function and the values of the covariates.
In cancer studies, there may be factors other than the
measured covariates that significantly affect the distribu-
tion of survival time. This condition is often referred to as
heterogeneity of the subjects. Among the early papers of
Vaupel, Manton and Stallard (1979) who used the concept
of to describe the differences in survival time apparently
among similar individuals. Hougaard (1995) presented an
overview of the models, proposed for the use in time to
event data. Aalen (1994) also provides a relatively non-
technical summary with a focus on fully parametric models.
Klein and Moeschberger (1997) presented methods based
on incorporating in proportional hazards models and its
technical details.

There are two approaches to a Bayesian analysis of the
Cox Proportional Hazards Model (PHM) .This is based on
the partial likelihood L(B; y) combined with a prior T(p)
which produces the posterior Ti(Bly). The baseline hazard
is left unspecified. Inference is made from samples drawn
from m(Bly). Thus the partial likelihood is treated as a like-
lihood function just as in the classical analysis. The basic
idea of a model is to incorporate a comparison between
Bayesian Cox PHM with non Bayesian approach of Cox
PHM.

which may be re-expressed as

(e)= o (2)exp () (1)

h(r)= by (t)exp [ﬁx., +1,), )

Using the relationship between the survival and hazard
function, it has the conditional survival function as

§(r) = Exp[ A, ()exp o) | @)

and the conditional likelihood as
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where there are I clusters, i" one being of size 77,and g
and b represent baseline hazard and regression param-
eters, respectively. On substitution it gives
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In the Bayesian point of view, the variance “t”, would be
expressed as a hyperparameter and prior knowledge con-
cerning its value which will be summarized in a hyper prior
distribution.

GIBBS SAMPLER ALGORITHM

The Gibbs sampler technique is one of the best known
MCMC sampling algorithms in the Bayesian computa-
tional methods. The Gibbs sampler by Grenander (1983),
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the prescribed term is introduced by Geman and Geman
(1984). Gibbs sampling is the landmark in problem of
Bayesian inference (Gelfand and Smith, 1991). The Gibbs
sampler tutorial is provided by Casella and George (1992).

Let 6=(4,.6,,..6,) be a p-dimensional vector of parameters
and let z(9|D) be its posterior distribution given the data
D. Then, the fundamental format of the Gibbs sampler is
given as

Step 1. Select an arbitrary starting point

6y =(80,630,6,0) and set =0
Step 2. Generated,, =[:&Li._pé?h._l,.uc-’;‘”._l )
. Generate 6., ~ 78, Sh.J...Jé?PJ.,D_‘],-
. Generate &, ., ~ (6, Sh._l,f-?_:.i,...,apj.JD_‘l-
.
. Generate 6, ., ~ :r{:c-’;‘p 6&“._1,8“_1,...,Sp_lli_l,D_\],-

Step 3. Set i =i+1, and go to step 2

Each component of 6 is in the natural order and a cycle
in this scheme requires generation of p random variates.
Gelfand and Smith (1990) show that under certain regular-
ity conditions, the vector sequence Le,, i=12..'has a station-
ary distribution z(9| D). The performance of a Metropolis-
Hastings algorithm depends on the choice of a proposal
density g. The Metropolis-Hastings algorithm can be used
within the Gibbs sampler when direct sampling from the
full conditional posterior is difficult.

PRIOR

Prior elicitation perhaps plays the most crucial role in
Bayesian inference. Survival analysis with covariates,
the most popular choice of informative prior for b is
the normal prior, and the most common choice of non
informative prior for b is the uniform prior. The non-in-
formative and improper priors may be useful and easier
to specify for certain problems, but they cannot be used
in all applications, such as model selection or model
comparison, as it is well known that proper priors are
required to compute Bayes factors and posterior model
probabilities (Ibrahim, et al., 2004). Also non informative
priors may cause instability in the posterior estimates
and lead to convergence problems for the Gibbs sam-
pler. Moreover, non informative prior do not make use
of real prior information that one may use for a specific
application.

APPLICATION

We consider the database consisting of 368 breast can-
cer women patients diagnosed at Cancer Institute (WIA),
Chennai, India and follow-up period up to 180 months,
represented by the variable Time. The event of interest
was time to death in months. A censoring indicator varia-
ble, Status, is created from the data, with the value O indi-
cating a censored time and the value 1 indicating an event
time.

Overall 187(51%) cases have experienced the event and
63% of 130 are of stage 3B cases.

The demographic and disease characteristics of the pa-
tients are given in table 1
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Table 1: Classification of death according to Stages and
Age group

Stages Age groups
Sta- Age <50 [Age > 50
Status Stage2B ge3A Stage3B years years
NG Inen N® N N
Alive |61 (55) |72 (56) |48 (37) |115(53) |66 (44)
Dead |49 (45) |56 (44) |82 (63) |103 (47) |84 (56)
Total {110 128 130 218 150

From the table1, we see that death increases with the
severity of stages and age. The event experienced cases
among age group in more than 50 years is higher than the
less than 50 years (Pari Dayal et al., 2013). The linear pre-
dictor is set equal to the intercept in the reference group
(stage = 3); this defines the baseline hazard. The corre-
sponding distribution of survival time is Gamma distribu-
tion (Cox and Oakes, 1984).

The Cox model with a parameter for each individual is us-
ing for identifying the risk variables for breast cancer pa-
tients. Here, the age and stages are considered as risk
factors of categorical predictor variables. We analyzed the
data assuming a Weibull distribution for the survivor func-
tion, and including random effect ik} for each patient.
The hazard model is as follows

ty ~ Weibailir, ) oi=d,. L 3oE

Yoga, = £ AGE, + 8, AGE+ 8, STAGE, - &, ETAGE ;+ 4, STAGE;+h

&, o~ Normalill, 7 )

where AGE; has two levels(Age <50yrs(=1 as reference)
and Age>50yrs), and stage has 3-level of categorical pre-
dictor covariates (stage2B = 1(as reference), stage 3A = 2
and stage 3B = 3) STAGE, (k=1,2,3)are dummy variables
representing the 3-level factor for underlying stage.

Cox Proportion Hazards regression

The Cox proportional hazards model to these data, varia-
bles age group and stages, which are categorical variables,
are also take part as stratified aspects. By default, they
categorized by using the reference coding with the last
category as the reference category. However, it can explic-
itly specify the reference category of our own preference.
Here, Age Group(less than 50 years=0) is chosen as the
reference category for age, stage (stage2B=1) is chosen as
the reference category for stages of cancer. Coded vari-
ables are resulted (table below “Class Level Information”)
with the reference coding has zero and the rest are having
one for all variables. Since age group variable is binary, the
variable has a value of O for the reference category. The
variable stage has three categories and is represented by
two dummy variables.

Class Level Information
Class Value Design Variables

0 0 Reference
Age group 1 1

1 0 |0 Reference
stage 2 1 0

3 0o N

The test results of individual model effects are shown in ta-
ble2. There is a strong prognostic effect of stages on pa-
tient’s survivivorship (00.0007), and the survival times for
patients of different age groups play a role other way that
it differ non significantly (0.4083). In the Cox proportional
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hazards model, the effects of the covariates are to act mul-
tiplicatively on the hazard of the survival time, and there-
fore it is a little easier to interpret the corresponding haz-
ard ratios than the regression parameters. For a categorical
variable parameter, the hazard ratio is the ratio of the haz-
ard rates between the given category and the reference
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category. The hazard rate of age group of less than 50
years is 1.137 times more that of Age Group more than 50
years, the hazard rate of stage of 3A is 0.951 times more
that of stage2B, and the hazard rate of stage3B is 1.715
times more that of stage2B. Moreover there is evidence
that the stage influences the event of interest.

Table2: Cox PH Model: Parameters Estimates with Reference Coding

Parameter Standard Hazard Wald
Parameter levels Chi-Square |P

Estimate Error Ratio ChiSq P
age group 1 0.12805 0.15485 0.6838 0.4083 1.137 0.68 0.4083
stage3A 2 -0.05045 0.19651 0.0659 0.7974 0.951 14.45 0.0007
stage3B 3 0.53946 0.18359 8.634 0.0033 1.715
-2LL 2027.348

The further illustrate the use of the backward elimination
process to identify the effects that affect the survivorship
of the breast cancer patients. It is specified to carry out
the backward elimination which specifies the significant
level for retaining the effects in the model. Hence, it re-
sults of the backward elimination process that it retained
the stage and eliminated the age group subsequently.

Bayesian Cox Proportion Hazards Regression

Cox Proportion Hazards Regression uses the partial likeli-
hood of the Cox model as the likelihood and generates a
chain of posterior distribution samples by the Gibbs Sam-
pler.

The Bayesian Cox PH model invokes the Bayesian analy-
sis with generating samples by Gibbs sampler to maintain
reproducibility to accumulate the posterior distribution
samples using the data. By default, a uniform prior distri-
bution is assumed on the regression coefficient Group. The
uniform prior is a flat prior on the real line with a distribu-
tion that reflects ignorance of the location of the param-
eter, placing equal probability on all possible values the
regression coefficient can take. Using the uniform prior, it
would expect the Bayesian estimates to resemble the clas-
sical results of maximizing the likelihood (see: Table2). It
should make sure that the posterior distribution samples
have achieved convergence before using them for Bayes-
ian inference.

Table4: Initial Values of the Chain on each Parameter

This analysis generates a posterior chain of 10,000 itera-
tions after 2,000 iterations of burn-in and it also displayed
the names of the parameters and their corresponding ef-
fects and categories. Further it computes the maximum
likelihood estimates of regression parameters are depicted
in table3. These estimates are used as the starting values
for the simulation of posterior samples.

Table3: Maximum Likelihood Estimates

Parameter |DF |Estimate E}Efgrdard E%tgonfidence

al 1 (0.128 0.1549 -0.1755 |0.4315
sta2 1 ]-0.0503 [0.1965 -0.4354 |0.3349
sta3 1 10.5394 |0.1836 0.1796  |0.8993
Theta 1 10.0001

Summary statistics, convergence diagnostics, and diag-
nostic plots are provided for each parameter of categori-
cal predictors. Summary statistics of the posterior samples
are shown in Table5. These results are quite comparable to
the classical results based on maximizing the likelihood as
shown in Table3, since the prior distribution for the regres-
sion coefficients is relatively flat. The table4 results the ini-
tial values of the chain on each parameters.

agel [0.128 |id41 [-0.612 [id84 |[-0.665 |id127 [0.2283 |id170 |0.381 |id213 [-1.0411 |id256 [-0.901 |id299 (0.596 |id342 |-0.586
sta2 [-0.027 |id42 [-1.249 [id85 [0.169 |id128 [0.1209 [id171 |-0.556 |id214 [0.4951 |id257 [-0.119id300 (0.252 |id343 |-1.098
sta3 [0.764 |id43 [0.038 |[id86 [-0.769 |id129 [0.5169 [id172 |-0.242 |id215 |-0.0492 |id258 (-0.248 |id301 [-0.617 |id344 |0.3766
id1  [-0.617 [id44 |-0.807 [id87 |-1.226 [id130 |0.5959 [id173 |0.215 [id216 [0.3108 |id259 [0.495 |id302 (0.449 |id345 |-0.436
id2  [-0.358 [id45 |0.657 [id88 |-1.159 [id131 |-1.0134 |id174 |0.618 [id217 [0.2797 |id260 |-0.574|id303 |-0.617 |id346 |-0.17
id3  [-0.258 [id46 |-0.752 [id89 |0.331 [id132 |0.3665 |id175 |-0.617 [id218 [0.5675 |id261 |0.451 |id304 [0.115 |id347 |0.2285
idd (0.088 [id47 |-0.689 [id90 |-0.491 [id133 |-0.4832 |id176 |-0.798 |id219 [0.6271 |id262 |-1.126|id305 |-0.361 |id348 |0.5914
id5 |-0.807 [id48 |0.537 |id91 |-0.673 [id134 [-1.3184 |[id177 |-0.501 |id220 |0.3665 |[id263 (0.419 [id306 |0.01 |id349 |0.3008
id6 0.21  [id49 [-0.059 |id92 |-0.441 [id135 [-0.9173 [id178 |-0.65 |id221 |-0.6051 [id264 |0.572 [id307 |0.464 |id350 |-0.496
id7  |-0.65 [id50 |-0.689 |id93 ]0.539 [id136 [-0.5308 |[id179 |0.637 |id222 |0.2683 |id265 (0.677 [id308 |-1.226 |id351 |0.3046
id8 |0.513 [id51 [-1.226 |id94 |0.104 |[id137 (-0.0147 |[id180 |0.533 |[id223 |0.4812 [id266 |-0.032 |id309 |0.667 |id352 |-0.59
id9  10.669 [id52 |0.524 |id95 |-0.66 [id138 [-0.5777 |[id181 |0.056 |id224 |-0.6051 [id267 (0.173 [id310 |0.661 |id353 |0.6093
id10 [0.646 [id53 |-0.496 [id96 |0.596 [id139 |-0.405 |id182 |-1.087 [id225 [0.3792 |id268 [0.077 |id311 |-1.085 |id354 |-0.952
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id11 10.34 [id54 [0.575 |id97 |-0.628 [id140 (-0.6375 |id183

-0.65 [id226 [0.2173  |id269 |-0.501 |id312 {-0.605 [id355 {-0.98

id12 |-0.723 [id55 [0.252 |id98 |0.304 [id141 [0.4011 [id184

-0.605 [id227 [-0.6596 |id270 |0.461 |id313 [-0.59 [id356 |0.1387

id13 |0.532 [id56 [0.485 [id99 |0.66 [id142 [0.3313 [id185

0.669 |[id228 [0.4011 |id271 |0.404 |id314 (0.3 id357 0.5319

id14 |-0.655 [id57 [0.49 |id100 |-0.057 [id143 (-0.8499 |id186

0.401 |[id229 [0.367 id272 [0.683 |[id315 |-1.041 |id358 |-0.578

id15 [-0.738 [id58 |0.661 [id101 |0.313 [id144 |-0.5308 |id187

-0.188 |id230 |0.1708  [id273 |-0.557 [id316 [0.168 [id359 |0.5563

id16 [-0.425 [id59  |-0.617 [id102 |-0.604 [id145 |0.1013 |id188

-0.617 |id231 |-0.6051 |[id274 10.505 [id317 |0.455 [id360 |0.4011

id17 (0.422 [idé0 |-0.47 [id103 |-0.605 [id146 |-0.6503 |id189

-0.013 |id232 |0.6683  [id275 |-0.59 [id318 |0.688 [id361 |-0.578

id18 [0.481 [idé1 |0.199 [id104 |-0.066 [id147 |-0.0093 |id190

-0.638 |id233 |0.5236  [id276 |-0.063 [id319 [0.208 |id362 |0.464

id19 [0.048 [idé2 |0.641 [id105 |0.449 [id148 |-0.6174 [id191

-0.003 [id234 [0.4812 |id277 |0.558 |id320 (-0.59 [id363 [0.4554

id20 [-0.162 [idé3  |0.173 [id106 |0.641 [id149 |-0.6596 |id192

-0.605 |id235 |0.6107  [id278 |-0.476 [id321 |0.309 |id364 |0.451

id21 [-1.052 [idé4 |0.388 [id107 |0.49 [id150 |0.5279 |id193

0.519 |id236 |0.4701 [id279 |-0.441 [id322 |0.539 [id365 |0.5964

id22 [-0.119 [idé5 |-0.104 (id108 |0.574 [id151 |-0.6785 |id194

0.439 |id237 |-0.5672 [id280 [0.37 [id323 [-1.027 |id366 |-0.501

id23 [-0.46 [id66 |-0.665 [id109 |0.455 [id152 |0.6242 |id195

0.197 |id238 |-0.6503 [id281 |-1.041 [id324 |-0.655 [id367 |-0.189

id24 1-0.127 |idé7 [-0.48 [id110 [0.502 |id153 [0.6683 [id196

-0.119 |id239 10.123 id282 |-0.027 |id325 [0.595 |id368 |0.5737

id25 |-1.013 [id68 [-0.605 |id111 |-1.159 |id154 |-0.6728 |id197

-0.154 (id240 [0.0557 |id283 |0.578 |[id326 [-0.655 [Theta |1

id26 |-1.226 [id69 [-0.566 |id112 |0.059 |id155 |-1.174 |id198

0.171 |id241 [0.0889 |id284 |-0.617 |id327 |-0.625

id27 10.575 [id70 [0.296 |id113 |-1.249 |id156 |-0.6728 |id199

-0.638 [id242 [0.401 id285 |-0.617 |id328 (0.62

id28 |-0.752 [id71 [0.668 |id114 |-0.66 |id157 |-0.6051 |id200

0.016 |[id243 [-0.3692 |id286 |-0.697 |id329 |-0.784

id29 |-0.137 [id72 |-0.703 |id115 |-0.679 |id158 |-0.6375 |id201

0.49 |id244 [-0.5777 |id287 |0.296 |id330 |-0.578

id30 [-1.318 |id73  [0.179 [id116 [-0.752 |id159 [-0.0241 |(id202

-0.617 |id245 |0.4038  [id288 |0.636 |[id331 |-0.607

id31 10.301 |id74 [0.086 [id117 |[-1.118 |id160 |[-0.5556 [id203

0.524 |id246 |-0.6074 [id289 |-1.002 [id332 |-1.002

id32 |-0.807 |id75 [-0.66 [id118 |[-0.605 |id161 [-0.7136 |(id204

0.383 |id247 |-0.6051 [id290 |-0.665 [id333 [0.102

id33 10.539 |id76 [0.237 [id119 [0.687 |id162 [-0.2241 |(id205

0.377 |id248 |-0.6653 [id291 |-0.567 [id334 |-0.455

id34 10.388 |id77 [-0.607 [id120 [-0.97 |id163 [-0.6247 |id206

-1.052 |id249 10.3716  [id292 |-0.556 [id335 |-0.258

id35 [0.126 [id78 |0.252 [id121 |-0.722 |id164 |0.6076 |id207

0.048 |id250 |-0.0159 [id293 |-0.655 [id336 |-0.129

id36 [-1.226 [id79 |-0.755 [id122 |-0.251 [id165 |-0.5556 |id208

0.629 |id251 |0.4384  |id294 |-0.605 [id337 |0.484

id37 |-0.466 [id80 |-0.48 [id123 |0.142 |[id166 |-0.3926 |id209

0.188 |id252 |-0.6051 [id295 |-0.011 [id338 [0.137

id38 [-0.807 [id81 |-0.531 [id124 |-0.582 [id167 |0.2131 |id210

-0.554 |id253 |0.691 id296 10.29 |id339 |0.381

id39 [-0.752 [id82 |-0.574 [id125 |-0.7 [id168 |-0.1541 [id211

-1.041 |id254 |0.264 id297 |-1.126 |id340 |-0.003

id40 [-0.612 [id83 |-1.002 [id126 |-0.703 [id169 |0.1512 |id212

-0.605 |id255 |-0.5952 |[id298 |0.288 |[id341 |0.449

With autocorrelations retreating quickly to 0 and large effective sample sizes (Table5) (both diagnostics indicate a reasonably

good mixing of the Markov chain.

Table5: Posterior Summaries and Intervals, Posterior Autocorrelations and Effective Sample Sizes

Param N Mean SD 95% HPD

ESS

Interval Lag 1

Efficiency
Llag5 |[Lag 10 |[Lag 50 Time

Age>50 (10000 |0.107 |0.160 |-0.204 |0.423 |0.939

0.741  |0.550 0.079 265 37.67 10.026

Stage3A [10000 |[-0.027 |0.201 |-0.431 [0.359 |0.950

0.776  |0.608 0.0924 |248 40.27 0.024

stage3B |10000 [0.609 [0.195 ]0.2383 |1 0.943 [0.75 0.568 0.0506 |245 40.84 0.024
id2 10000 |[-0.081 |0.33 -0.791 |05 0.907 ]0.62 0.395 0.0297 |393 25.46 0.039
id4 10000 |[-0.040 |0.280 [-0.545 |[0.574 [0.955 |0.800 [0.646 0.2458 |92 108.7 |0.009

Theta 10000 (0.115 |0.081 [0.0417 |[0.31 |0.984

0.979 |0.976 0.9473 |22 455.4 ]0.002

Trace, autocorrelation and density plots are produced for
each of the four parameters 6 in figure1 also confirm the
convergence of the Markov chain. It is imperative that
these are examined before any conclusions are drawn from

the simulated posterior samples. The results shown on the
table6 are almost perfect. The trace plot show excellent
mixing, the autocorrelation decreases to near zero, and the
density is bell-shaped. The trace plots are centered near
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their respective posterior mean and later the posterior
space with small fluctuations. For the theta which corre-
sponds to the all group, the trace plot is centered near the
posterior mean. Samples in both tails are covered. These
results exhibit convergence of the Markov chain to its sta-
tionary distribution.

]
A=A =L

Figure1: Confirmation of convergence by
Trace, autocorrelation and density plots

The first hazard ratio table compares the hazards between
the age group less than 50 years and more than 50 years.
Summaries of the posterior distribution of the correspond-

Table6: Hazard Ratios for age group

Volume : 4 | Issue : 8 | August 2014 | ISSN - 2249-555X

ing hazard ratio are shown in Table 6. There is a 95%
chance that the hazard ratio of the age group less than
50 years and more than 50 years lies between 0.655 and
1.244. The second hazard ratio tables for three types of
combinations with three different pairs of stages are being
compared. Assesses the change of hazards for each pairs
of stages and compares the stage?A vs Stage3A, stage2A
vs Stage3B and stage3A vs Stage3B. Hazards ratio for
Stage2A vs Stage3A lies between 0.694 and 1.538, haz-
ards ratio for stage2A vs Stage3B lies between 0.369 and
0.795. Similarly the hazards ratio for stage3A vs Stage3B
lies between 0.371 and 0.767. Also it reports the simple
statistics, percentiles, credible intervals, and high probabili-
ty density (HPD) intervals for each of the parameters based
on the posterior sample of 10000. Because the priors used
are non-informative, the mean, standard deviation and
credible interval should be fairly close to the correspond-
ing maximum likelihood estimates (estimate, standard er-
ror, 95% Cl)

o Percentiles /Quantiles Posterior Intervals
pescription N MeanIsp 25%  [s0%  [75%  |75% EqualTall - ose, HPD interval
Age<50 vs >50 [10000 0.9099 0.149 0.802 0.893 1.001 0.655 |’I.244 0.644 1.215
Hazard Ratios for stage
sta 1vs2 10000 1.0485 0.2138 0.889 1.035 1.174  |0.694 1.538  |0.631 1.448
sta 1vs 3 10000 |0.554 0.1085 0.477 |0.547 ]0.623 |0.369 [0.795 |0.359  [0.771
sta 2 vs 3 10000 |0.5383 0.1011 0.464 0529 [0.594 |0.371 0.767 ]0.349  |0.729
Discussion These results we can also use post sample to assess the

Bayesian Cox PH model proposed to fit flexible survival
models for non-informative censored breast cancer data.
Using SAS University Edition Virtual Application Software,
we presented the comparable results as compared with
the results of the seminal paper (Pari Dayal et al. 2013).
Draw information based on different types of deviance
criteria along with various additional supportive measures.
The results which are presented in this paper followed the
same trend and in fact it showed the reality. Results in all
tables and all visual approximate estimates which are pre-
sented in this paper are consistent. The DIC is a suitable
device to draw conclusions. Before drawing inferences
from the posterior sample, we should examine the trace,
autocorrelation and density plots for each parameter to
be content that the underlying chain has converged. The
plots for the two parameters shown the mixing in the chain
is acceptable, although we notice long correlation times.
The hazard ratio statement delivers the Bayes solution cor-
responding to the previous classical analysis in Table 2.

posterior probability that the HR for age vs stage after the
event of interest is <1. The probability is over 99%.

However, an enormous statistical knowledge is required
for it to be used correctly. This approach provides an alter-
native validation that could be used to confirm results of
‘frequentist’ approach. Bayesian inference has a number of
advantages over the frequentist approaches, mostly in the
flexibility of model-building for time to event breast cancer
survival data. In addition, for many models, ‘frequentist’ in-
ference can be obtained as a special case of Bayesian in-
ference with the use of non-informative priors (lbrahim et
al., 2001). The Bayesian approach enables us to formulate
accurate inference based on the posterior distribution for
any sample size, whereas the ‘frequentist’ approach relies
heavily on the large sample approximation. The most im-
portant concern is that there is a risk involved in the erro-
neous usage of the Bayesian methods which could lead to
improper data analysis

SIS AT A 1. Aalen O. O. (1994). Effects of frailty in Survival Analysis. Statistical Methods in Medical Research, 3, 227-43. | 2. Casella, G., and George,

E.l. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167-74. | 3. Chib, S. and Greenberg, E. (1995), “Understanding the
Metropolis-Hastings Algorithm,” American Statistician, 49, 327-335. | 4. Cox, D.R. (1972). Regression model and life tables (with discussion). Journal of the Royal
Statistical Society(B), 34, 187-220. | 5. Cox, D.R and Oakes, D. (1984), Analysis of Survival Data. London Chapman and Hall. | 6. Gelfand, A.E., and Smith, A.F.M. (1990).
Sampling-based approaches to calculating marginal densities. Journal of the Americal Statistical Association, 85, 398-409. | 7. Gelfand, A.E., and Smith, A.F.M. (1991).
Gibbs sampling for marginal posterior expectations, Communications in Statistics, A, 20, 1747-66. | 8. Geman, S and Geman, D. (1984). Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images. IEEE Transactions on pattern analysis and Matching Intelligence, 6, 721-41. | 9. Grenander, U. (1983). Tutorial in
pattern theorey. Technical Report. Providence, R.I: Division of Applied Mathematics, Brown University. | 10. Ibrahim, G. J., Chen, M-H., and Sinha, D. (2001). Bayesian
Survival Analysis. New York, Springer. | 11. Ibrahim, G. J., Chen, M-H., and Sinha, D. (2004). Bayesian methods for joint modeling of longitudinal and survival data with
applications to cancer vaccine trials. Statistica Sinica, 14, 863-83. | 12. Pari Dayal L, Leo Alexander T, Ponnuraja C, and Venkatesan P. Modelling of breast cancer survival
data: A frailty model approach. Indian Journal of Applied Research, 2013, 3(10), 22-24 |

INDIAN JOURNAL OF APPLIED RESEARCH = 501



