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Abstract: Targeted metabolomics studies reported metabolic abnormalities in both treated and
untreated people living with human immunodeficiency virus (HIV) (PLHIV). The present study
aimed to understand the plasma metabolomic changes and predicted the risk of accelerated aging
in PLHIV on long-term suppressive antiretroviral therapy (ART) in a case-control study setting
and its association with the plasma proteomics biomarkers of inflammation and neurological
defects. Plasma samples were obtained from PLHIV on successful long-term ART for more than
five years (n = 22) and matched HIV-negative healthy individuals (n = 22, HC herein). Untargeted
metabolite profiling was carried out using ultra-high-performance liquid chromatography/mass
spectrometry/mass spectrometry (UHPLC/MS/MS). Plasma proteomics profiling was performed
using proximity extension assay targeting 184 plasma proteins. A total of 250 metabolites differed
significantly (p < 0.05, q < 0.1) between PLHIV and HC. Plasma levels of several essential amino acids
except for histidine, branched-chain amino acids, and aromatic amino acids (phenylalanine, tyrosine,
tryptophan) were significantly lower in PLHIV compared to HC. Machine-learning prediction of
metabolite changes indicated a higher risk of inflammatory and neurological diseases in PLHIV.
Metabolic abnormalities were observed in amino-acid levels, energetics, and phospholipids and
complex lipids, which may reflect known differences in lipoprotein levels in PLHIV that can resemble
metabolic syndrome (MetS).

Keywords: untargeted metabolomics; HIV/acquired immune deficiency syndrome (AIDS); targeted
proteomics; antiretroviral therapy

1. Introduction

The life span of people living with human immunodeficiency virus (HIV) (PLHIV) now approaches
that of HIV-negative persons because of effective combination antiretroviral therapy (cART). However,
the efficacy of successful treatment depends on the lifelong intake of antiretroviral (ARV) drugs that have
their side effects [1]. Also, ART shifted the spectrum of morbidity toward non-infectious complications
such as diabetes, as well as cardiovascular, kidney, liver, bone-related, and neurological diseases,
which appear at an earlier age in PLHIV [2]. The metabolic side effects of the ARV drugs mainly on the
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lipid profile has been extensively studied [3,4]. Previous studies showed that metabolic abnormalities
are common in PLHIV both in untreated and treated conditions (reviewed in Reference [5]). Factors
like host immune response, opportunistic infections, ART drugs, and HIV itself could be responsible for
the metabolic derangement during HIV infection. Different ARV drugs have their effects on metabolic
changes based on their toxicity profile like specific protease inhibitors (PIs) and nucleoside reverse
transcriptase inhibitors (NRTIs), and switching drug classes to raltegravir and certain non-nucleoside
reverse transcriptase inhibitors (NNRTIs) like nevirapine showed an improvement in metabolism [6].

The antiretroviral therapy program in low- and middle-income countries like India follows a
public health approach. The first-line treatment regimen is reverse transcriptase inhibitor-based therapy
with two nucleoside reverse transcriptase inhibitors (NRTI), tenofovir (TDF) or zidovudine (AZT) in
the backbone of lamivudine (3TC), non-nucleoside inhibitors (NNRTIs) efavirenz (EFV) or nevirapine
(NVP). The long-term treatment response to the first-line ART regimen was found to be good in the
setting [7], even though patient monitoring was performed based on immunological and clinical
definitions, unlike high-income counties where the patients are monitored virologically. Studies on the
general population from India based on blood lipids, apolipoproteins, and glucose profile identified a
high prevalence of individuals with blood metabolic abnormalities [8]. The prevalence of metabolic
syndrome (MetS) was also higher in treatment-experienced PLHIV compared to treatment-naïve
individuals [9] with the highest prevalence in the Asian region. To best of our knowledge, no complete
unbiased plasma metabolic profile of PLHIV is reported from India.

The HIV–human metabolic relationship is a complex interaction made intricate even more by
ART, lifestyle, and comorbidities [10]. High-throughput untargeted metabolomics best represents
the molecular phenotype directly with an influence of the environment and reflects the underlying
biochemical activity inside the host. Earlier untargeted metabolomics studies on biofluids [plasma
and cerebrospinal fluid (CSF)] of PLHIV on short-term cART identified a signature metabolite profile
that is associated with accelerated aging [11,12]. Plasma metabolomics profiles of PLHIV from
the United States on more than one year on a boosted protease inhibitor (bPI) identified signature
metabolites of lipid, amino-acid, and nucleotide metabolism that have distinguishing features from that
of HIV-negative controls [12]. A more recent study from the Netherlands using targeted metabolites
of biogenic amine, lipids, oxylipins, and oxidative stress showed minimal change after one year of
ART [10]. Another untargeted metabolomics study from Spain indicated that glutaminolysis and
lipoproteins are vital factors in slow immune recovery at 96 weeks of antiretroviral therapy [13]. Thus,
PLHIV on suppressive ART have an increased risk of metabolomic disorders that can increase their
risk of age-related diseases. The metabolic signatures in these people identified through both targeted
and untargeted metabolomics were only studied well in short-term treatment, but understanding is
limited in long-term therapy. Also, the environment, diet, and antiretroviral treatment regimen have
an enormous impact on metabolic disease risk, and the genetic determinants of metabolism may vary
across population. The studies conducted in one setting may not be reflective of another population.
In our recent study, we observed that several soluble proteomics biomarkers of cancer, cardiovascular,
neurological, and skeletal diseases like Eukaryotic translation initiation factor 4E (eIF4E)-binding
protein 1 (4E-BP1), Adenosine Deaminase (ADA), C-C motif chemokine 23 (CCL23), T-cell surface
glycoprotein CD5 (CD5), T-cell surface glycoprotein CD8 alpha chain (CD8A), Cystatin D (CST5),
Matrix metalloproteinase-1 (MMP1), Neurotrophin-3 (NT3), Signaling lymphocytic activation molecule
family member 1 (SLAMF1), Tumor Necrosis Factor (TNF)-related apoptosis-inducing ligand (TRAIL),
and TNF-related activation-induced cytokine (TRANCE) differed significantly between PLHIV and
HIV-negative controls. We, therefore, hypothesized that PLHIV on long-term successful ART are at
higher risk of developing inflammatory diseases leading to inflammaging [14]. The present exploratory
study aims to understand the metabolomic changes and associated risk of accelerated aging in PLHIV
on a long-term suppressive RTI-based ART regimen. We also examined the relationship between
plasma markers of inflammation and neurological defects and identified a distinct metabolite signature
in PLHIV as compared to age- and lifestyle-matched healthy controls. To the best of our knowledge,
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this is the first comparative study with complete and unbiased profiling of circulating metabolites in
PLHIV from the country.

2. Results

2.1. Cohort Characteristics

The cohort characteristics are presented in Table 1. The participants were screened from a larger
cohort of 553 individuals attending a tertiary care ART Center for routine standard of care from the
southern part of India. The complete cohort characteristics are presented elsewhere [14]. All the
PLHIV were initiated on treatment with very low CD4+ T-cell count, but all of them had higher CD4+

T-cell count at sampling. The leucocyte telomere length was significantly shorter in PLHIV than
matched HIV-negative healthy individuals (HC). The median [interquartile range (IQR)] latent HIV-1
reservoir quantified by total HIV-1 DNA copy numbers was 2.78 (2.58–3.01) copies/106 peripheral
blood mononuclear cell (PBMCs). Among the PLHIV, 59% (13/22) were on AZT/3TC/NVP and 41%
(9/22) were on TDF/3TC/EFV, which is the first line of therapy in the country, and they did not have
any evidence of treatment failure.

Table 1. Participant clinical and demographic data.

Parameter HIV-1 Negative Healthy Control PLHIV on Therapy p-Values

Number 22 22
Age in years, mean (95% CI) 45 (43–47) 45 (43–48) 0.91

Sex, Female, n (%) 10 (45%) 9 (41%) 0.99
Telomere length, Mean (95% CI) 1 5.9 (4.3–7.2) 2.3 (1.6–2.9) <0.001
Nadir CD4 count, median (IQR)) - 229 (176–318) -

CD4 count at sampling, median (IQR) - 624 (524–746) -
CD8 count at sampling, median (IQR) - 757 (665–882) -

Viral load, copies/mL - <150 -
CD4:CD8 ratio, median (IQR) - 0.8 (0.58–1.02) -

Years on therapy, median (IQR) - 9 (6–10) -
Reservoir, log10 copies/106 cells, median (IQR) - 2.78 (2.58–3.01) -

Treatment regimen
AZT/3TC/NVP
TDF/3TC/EFV

- 13 (59%)
9 (41%) -

1 Leucocyte, on each chromosome end, IQR: Interquartile range, CI: Confidence interval, AZT/3TC/NVP:
Zidovudine/Lamivudine/Nevirapine, TDF/3TC/EFV: Tenofovir/Lamivudine/Efavirenz.

2.2. Metabolite Summary

We identified 1114 bio-chemicals, of which 901 compounds were of known identity (named
biochemicals) and 213 compounds of unknown structural identity (unnamed compounds). To analyze
variations between the two groups, supervised analysis with orthogonal partial least square discriminant
analysis (OPLS-DA) and unsupervised analysis with principal component analysis (PCA), which
transforms a large number of metabolic variables into a smaller number of orthogonal variables,
were performed. A clear separation between PLHIV and HC groups was seen, with more clustering
in HC but scattered in PLHIV, and more association in the Tenofovir/Lamivudine/Efavirenz (TLE)
regimen in OPLS-DA analysis (Figure 1). A similar separation between the two groups was also
observed in the PCA analysis (Figure S1, Supplementary Materials).

The t-tests identified 250 significantly different metabolite levels (p < 0.05, false discovery rate
(FDR, q) < 0.10) between PLHIV and HC. Among the metabolites, 156 were lower (Figure 2a) while
94 were higher in PLHIV compared to HC (Figure 2b). While underpowered, within the PLHIV
group, there were 164 significantly different metabolites [(144 lower and 20 higher in TLE compared
to Zidovudine/Lamivudine/Nevirapine (ZLN)] between the individuals on TLE and ZLN treatment
regimens (Figure 2b). There were five metabolites that were lower in PLHIV compared to HC and also
lower in patients with TLE compared to the ZLN groups (4-hydroxyglutamate, leucine, metabolonic
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lactone sulfate, threonate, and X-16935, where X-16935 is a novel compound). All the significant
comparisons presented in Venn diagrams are given in the supplementary data file 1.
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Figure 1. Orthogonal partial least square discriminant analysis (OPLS-DA) and metabolite summary:
(a) OPLS plot using 1114 biochemicals, of which 901 compounds were of known identity (named
biochemicals) and 213 compounds of unknown structural identity (unnamed compounds) identified
group clustering of human immunodeficiency virus (HIV)-negative control (green) and people living
with HIV (PLHIV) on Tenofovir/Lamivudine/Efavirenz (TDF/3TC/EFV) (orange) and PLHIV on
Zidovudine/Lamivudine/Nevirapine (AZT/3TC/NVP) (purple).

Metabolites 2019, 9, x FOR PEER REVIEW 4 of 16 

 

 

Figure 1. Orthogonal partial least square discriminant analysis (OPLS-DA) and metabolite summary: 

(a) OPLS plot using 1114 biochemicals, of which 901 compounds were of known identity (named 

biochemicals) and 213 compounds of unknown structural identity (unnamed compounds) identified 

group clustering of human immunodeficiency virus (HIV)-negative control (green) and people living 

with HIV (PLHIV) on Tenofovir/Lamivudine/Efavirenz (TDF/3TC/EFV) (orange) and PLHIV on 

Zidovudine/Lamivudine/Nevirapine (AZT/3TC/NVP) (purple). 

The t-tests identified 250 significantly different metabolite levels (p < 0.05, false discovery rate 

(FDR, q) < 0.10) between PLHIV and HC. Among the metabolites, 156 were lower (Figure 2a) while 

94 were higher in PLHIV compared to HC (Figure 2b). While underpowered, within the PLHIV 

group, there were 164 significantly different metabolites [(144 lower and 20 higher in TLE compared 

to Zidovudine/Lamivudine/Nevirapine (ZLN)] between the individuals on TLE and ZLN treatment 

regimens (Figure 2b). There were five metabolites that were lower in PLHIV compared to HC and 

also lower in patients with TLE compared to the ZLN groups (4-hydroxyglutamate, leucine, 

metabolonic lactone sulfate, threonate, and X-16935, where X-16935 is a novel compound). All the 

significant comparisons presented in Venn diagrams are given in the supplementary data file 1. 

 

Figure 2. Metabolite summary. Four different comparative analyses were performed on PLHIV 

compared to healthy control (HC vs. PLHIV), patients on Tenofovir/Lamivudine/Efavirenz (TLE) 

compared to HC (HC vs. TLE), patients on Zidovudine/Lamivudine/Nevirapine (ZLN) compared to 

HC (HC vs. ZLN), and patients on ZLN compared to patients on TLE (ZLN vs. TLE). (a) Number of 

metabolites that were significantly (p < 0.05, q < 0.1) lower in PLHIV, TLE, and ZLN (marked in bold) 

Figure 2. Metabolite summary. Four different comparative analyses were performed on PLHIV
compared to healthy control (HC vs. PLHIV), patients on Tenofovir/Lamivudine/Efavirenz (TLE)
compared to HC (HC vs. TLE), patients on Zidovudine/Lamivudine/Nevirapine (ZLN) compared to
HC (HC vs. ZLN), and patients on ZLN compared to patients on TLE (ZLN vs. TLE). (a) Number of
metabolites that were significantly (p < 0.05, q < 0.1) lower in PLHIV, TLE, and ZLN (marked in bold)
compared to HC and patients on ZLN (marked in bold) compared to patients on TLE. (b) Number of
metabolites that were significantly (p < 0.05, q < 0.1) higher in PLHIV, TLE, and ZLN (marked in bold)
compared to HC and patients on ZLN (marked in bold) compared to patients on TLE.
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The pathway enrichment analysis was carried out in ingenuity pathway analysis (IPA) (Qiagen,
Germany) with metabolites with the Human Metabolome Database (HMBD) IDs (n = 228 mapped).
The functional annotation by canonical pathways associated with differential levels of metabolites
revealed that top 20 pathways were mainly related to the differential level of amino acids (Figure 3).
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Figure 3. Pathway enrichment analysis results from Ingenuity Pathway Analysis (IPA) for metabolome
data between PLHIV and HC. Top 20 canonical pathways (in green) are shown. Bubble sizes are relative
to p-values. The metabolites (in red) related to each pathway are linked with a continuous gray line.

2.3. Disease and Biofunction Predicted by Ingenuity Pathway Analysis (IPA)

To infer the possible biological impact associated with the metabolic changes in PLHIV, we used
IPA on those metabolites with HMBD IDs (n = 228 mapped). IPA predicted effects on disease and
biofunctions related to immunological disease, inflammatory disease and inflammatory response,
neurological disease, and organismal injury and abnormalities (p < 0.05) (Figure 4a). Prediction of
activation or inhibition of a disease or biofunction in PLHIV was calculated as a negative or positive
z-score. There was an increase in the uptake of specific amino acids including l-alanine and l-proline,
as well as transport of d-glucose, injury of the central nervous system, and transport of molecules
(p < 0.001) (Figure 4b).
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Figure 4. Metabolome annotation and biofunction analysis. (a) Metabolome annotation results obtained
from ingenuity pathway analysis (IPA). The figure visualizes the most significant biological functions
(p < 0.05) and corresponding metabolites. (b) Pathway enrichment analysis results from IPA for
metabolome data. IPA generated activation z-scores in the x-axis and p-values in the y-axis. Bubble
sizes are relative to p-values. A negative z-score implies significant downregulation of the pathway and
vice versa.

2.4. Identification of Potential Biomarkers

To identify potential biomarkers of interest among the significant biochemicals, random forest
(RF) analysis was performed using the two groups (HC vs. PLHIV) and sub-groups (PLHIV-TLE vs.
PLHIV-ZLN) to examine the effect of treatment regimen on biochemicals. We performed the analysis
either with only identified named biochemicals (n = 901) or including all biochemicals (n = 1114).
The RF analysis of named biochemicals resulted in predictive accuracies of 100% for HC vs. PLHIV
(Figure 5a) and 86% for PLHIV-TLE vs. PLHIV-ZLN (Figure 5b). While including all the metabolites,
the predictive accuracy remained unchanged for HC vs. PLHIV but increased to 91% for PLHIV-TLE vs.
PLHIV-ZLN (Figure S2, Supplementary Materials). The biochemical importance plots display the top
30 metabolites which most strongly contribute to the groups’ separation for HC vs. PLHIV (Figure 5)
and PLHIV-TLE vs. PLHIV-ZLN (Figure 5b). Among the top 30 metabolites, most differentiating
biochemicals in HC vs. PLHIV were involved in amino-acid metabolism (8/30) and lipid metabolism
(8/30). Two biochemicals that stood out as particularly interesting were methionine sulfone and
metabolomic lactone sulfate (Figure 5a). In PLHIV-TLE vs. PLHIV-ZLN, half of the biochemicals were
part of lipid metabolism, while 30% (9/30) were part of amino-acid metabolism.

The hierarchical clustering of all the samples (HC and PLHIV) indicated negative z-scores for
lysine, leucine, methionine, tryptophan, and serine, indicating the lower level in PLHIV compared
to HC; however, methionine sulfone had a higher level with positive z-scores in PLHIV (Figure 6).
Despite the smaller sample size, these 30 metabolites were powered enough for group separation
between PLHIV-TLE vs. PLHIV-ZLN, as observed in PCA (Figure S3).



Metabolites 2019, 9, 210 7 of 16
Metabolites 2019, 9, x FOR PEER REVIEW 7 of 16 

 

 

Figure 5. (a) Random forest (RF) analysis of named biochemicals resulted in predictive accuracies of 

100% for HC vs. PLHIV. The biochemical importance plots display the top 30 metabolites which most 

strongly contribute to the groups’ separation for HC vs. PLHIV based on amino-acid metabolism, 

lipid metabolism, energy metabolism, co-factors and vitamins, peptides, and xenobiotics, as indicated 

in different colors in the legend. (b) The RF analysis of named biochemicals resulted in predictive 

accuracies of 86% for PLHIV-TLE vs. PLHIV-ZLN. The biochemical importance plots display the top 

30 metabolites which most strongly contribute to the groups’ separation based on amino-acid 

metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and xenobiotics. 

Figure 5. (a) Random forest (RF) analysis of named biochemicals resulted in predictive accuracies of
100% for HC vs. PLHIV. The biochemical importance plots display the top 30 metabolites which most
strongly contribute to the groups’ separation for HC vs. PLHIV based on amino-acid metabolism,
lipid metabolism, energy metabolism, co-factors and vitamins, peptides, and xenobiotics, as indicated
in different colors in the legend. (b) The RF analysis of named biochemicals resulted in predictive
accuracies of 86% for PLHIV-TLE vs. PLHIV-ZLN. The biochemical importance plots display the
top 30 metabolites which most strongly contribute to the groups’ separation based on amino-acid
metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, and xenobiotics.
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Figure 6. The hierarchical clustering of all the samples (HC and PLHIV) indicated negative z-scores for
lysine, leucine, methionine tryptophan, and serine (marked in red), indicating lower levels in PLHIV
compared to HC; however, methionine sulfone (marked in blue) had a higher level with positive
z-scores in PLHIV.

2.5. Altered Amino-Acid Metabolism and Kynurenine-to-Tryptophan (K/T) Ratio in PLHIV

Amino acids play an essential role both as regulators in several metabolic pathways and as primary
substrates. Lower levels of all essential amino acids (EAA; lysine, phenylalanine, tryptophan, leucine,
isoleucine, valine, methionine, and threonine) except histidine were observed in PLHIV compared
to HC, which include the branched-chain amino acids (BCAA; leucine, isoleucine, and valine) and
aromatic amino acids (AAA; phenylalanine, tyrosine, and tryptophan) (Figure 7a).
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Figure 7. Metabolic pathways associated with HIV-1 infection following long-term therapy (a) Altered
amino-acid metabolism. Amino acids (n = 20) that were significantly lower (in blue) or higher (in red)
in PLHIV compared to HC. The level of tryptophan (b), Kyn/Trp ratio (c), and serotonin (d).

Tryptophan levels were significantly reduced in PLHIV compared to HC (Figure 7b); however, no
statistically significant difference was observed in kynurenine levels. Despite that, the kynurenine-
to-tryptophan (K/T) ratio was significantly increased in PLHIV (Figure 7c). Although there was no
statistical significance, 50% of the PLHIV had lower serotonin than the lower quartile (Figure 7d).
These data indicate that the PLHIV on ART maintain certain levels of systemic inflammation.
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2.6. Altered Energy Metabolism

Glucose levels were significantly lower in the PLHIV compared to HC. Via a series of
enzyme-catalyzed steps, glucose is metabolized to pyruvate which can either be oxidized in the
mitochondria to enter the tricarboxylic acid cycle TCA cycle as acetyl Coenzyme A (CoA) or reduced
to lactate by lactate dehydrogenase (LDH). Interestingly, the lower level of glucose did not result in
lower pyruvate or lactate in the PLHIV group. The mitochondrial TCA cycle links the catabolism of
carbohydrates, lipids, and some amino acids to ATP production via the supply of reducing equivalents
through oxidative phosphorylation. In the current study, citrate, aconitate, and succinate were lower
in PLHIV compared to HC (Figure 8). TCA cycle carbon can be supplemented by the glutaminolysis
process, in which glutamine is converted to glutamate, then to α-ketoglutarate, which was higher in
PLHIV subjects. It is possible that glutaminolysis supported α-ketoglutarate, as neither glutamate nor
glutamine was altered in PLHIV. Likely because of decreased amino-acid levels, levels of urea cycle
metabolites, including the amino-acid arginine and urea, were lower in PLHIV samples (Figure 8).
Homoarginine was also lower in the PLHIV group, but citrulline was not different. These data
suggest that PLHIV would produce lower nitric oxide. However, this would need to be assessed in a
cell-based assay.
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Figure 8. Altered metabolic pathways associated with HIV-1 infection following long-term therapy
Schematic map of tricarboxylic acid (TCA) cycle, glycolysis, urea cycle, and glutaminolysis. Blue
indicates a significantly (p < 0.05) lower level of metabolites in PLHIV compared to HC. α-ketoglutarate
was the only metabolite that had a significantly higher level (marked in red) in PLHIV compared to HC.

2.7. Changes in Phospholipids, Ceramides, and Other Complex Lipids

Phospholipids are synthesized from diacylglycerols and polar head groups such as choline or
ethanolamine and circulate in the plasma as constituents of lipoproteins synthesized mostly in the liver.
In our study, several phosphatidylcholines (PC; e.g., 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine
(18:0/18:1)) were higher in the PLHIV group compared to the HC (Figure S4). GPC-lysophospholipids
(e.g., 1-lignoceroyl-GPC (24:0)) were also higher in the PLHIV group. There were significant changes
in other complex lipids in the plasma of the PLHIV, which may be markers of inflammation, immune
cell function, and oxidative stress. The ceramides (e.g., N-palmitoyl-sphingosine (d18:1/16:0)) were
higher in PLHIV compared to HC samples. Sphingomyelins (e.g., sphingomyelin (d18:2/18:1)) and
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dihydrosphingomyelins (e.g., palmitoyl dihydrosphingomyelin (d18:0/16:0)) were lower in the PLHIV
group compared to HC.

2.8. Plasma Proteomic Profile and Its Correlation with Metabolite

The plasma metabolomics profile indicated a higher risk of inflammatory and neurological
diseases in PLHIV. We next performed plasma proteome profiling targeting 184 proteins in two
Olink® panels: inflammation targeting inflammation-related proteins and neuro-exploratory, targeting
neurology-related diseases, and biological processes such as axon development, neurogenesis, and
synapse assembly. Among the proteins analyzed, 11 from the neuro-exploratory and three from the
inflammation panel were significantly different between the groups (Figure 9).
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Figure 9. Plasma proteomics profiling and protein metabolite interactions. Normalized protein
expression (NPX) visualization of significantly enriched proteins (p < 0.05) from Welch’s two-sample
t-test between HC (green) and PLHIV (orange) groups. GPNMB: Transmembrane glycoprotein
NMB (GPNMB), CDH17: cadherin-17, SFRP1: secreted frizzled-related protein 1, BST2: bone
marrow stromal antigen 2, DEFB4A: defensin beta 4, PTS: 6-pyruvoyltetrahydropterin synthase,
ANXA10: annexin A 10, IL15: Interleukin 15, TPPP3: tubulin polymerization-promoting protein
family member 3, AOC1: amiloride-sensitive amine oxidase (copper-containing), CD8A: T-cell surface
glycoprotein CD8 alpha chain, TRANCE: Tumor Necrosis Factor (TNF)-related activation-induced
cytokine, NT-3: neurotrophin-3.
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Figure 10. (a) Pearson correlation coefficient visualization and hierarchical clustering between
metabolites and proteins. Metabolites belonging to various categories were plotted in rows and
proteins in columns. (b) Protein–protein interaction results between two clusters of proteins from
correlation clustering. Blue elements are cluster-1 proteins, and red elements are cluster-2 proteins.
Bubble size is relative to the number of interactions, and each ribbon implies an interaction.
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Next, we performed a correlation analysis between plasma proteins and metabolites in five
distinct pathways in PLHIV. There were two different clusters of proteins while correlating with the
metabolites (Figure 10a). In cluster 1, most of the proteins were positively correlated with amino
acids, while cluster 2 proteins were positively co-related with ceramides and sphingomyelins. While
performing the functional links between proteins in clusters 1 and 2 in STRING-protein interaction
database, a strong association between the proteins was observed. Most of the interleukins were in
cluster 1, while CXC chemokine and C–C motif chemokine were in cluster 2 (Figure 10b).

3. Discussion

In the present study, we found a pattern of metabolic abnormalities in several biological pathways
involved in amino-acid metabolism, energy metabolism, urea, and TCA cycle, with changes in
ceramides, phospholipids, and other complex lipids in PLHIV in spite of them being on suppressive
cART for several years. The untargeted metabolomics approach identified 1114 metabolites including
213 unnamed biochemicals in PLHIV, which provides an unbiased picture of metabolite abnormalities.
The predicted effects of these deranged metabolites on disease and biofunctions that are related to
immunological, inflammatory, and neurological disorders were significant in PLHIV. Collective analysis
of plasma proteomic profiles with the metabolic profile in this cohort and the proteomics profile in the
larger cohort recently described by us [14] indicated the persistence of systemic residual inflammation
along with a higher risk of age-associated immunological, inflammatory, and neurological diseases,
organismal injury, and abnormalities in PLHIV.

Chronic HIV infection and resultant inflammation continuously activate the host immune system.
Consequently, there is a metabolic imbalance in the host immune system, which can be aggravated
by the ART toxicities. Among the changes in the metabolomic processes, distinct changes were
observed in amino-acid metabolism and differences in energetics. The machine learning algorithm
predicted that the PLHIV are at risk for developing neurological disease and organismal injury and
abnormalities in addition to immunological and inflammatory diseases. Antiretroviral drugs like
zidovudine (AZT), which is part of the first-line ART in India, induce mitochondrial dysfunction
by inhibition of DNA pol-γ activity [15] that can cause oxidative stress. Several studies reported a
decrease in antioxidant levels in PLHIV on ART compared to the treatment naïve HIV-positive and
HIV-negative controls [10,16]. In the RF analysis, the top two metabolites were methionine sulfone and
metabolomic lactone sulfate. Higher levels of methionine sulfone (an irreversible oxidation product
of methionine) were identified in PLHIV on ART compared to HIV-negative controls. Also, specific
ceramides are increased in PLHIV and are known to track 4-hydroxynonenal (4-HNE) [17]. Higher
levels of methionine sulfone and ceramides are indicators of increased oxidative stress, which was
observed in earlier studies [5]. A recent study from the Netherlands that analyzed targeted metabolites
of biogenic amine, lipids, oxylipins, and oxidative stress showed minimal change after one year of
ART [10]. Our study is, therefore, indicative that, even after long-term suppressive therapy, persistent
chronic oxidative stress exists in PLHIV. If not controlled, oxidative stress can be responsible for the
induction of age-related chronic and degenerative diseases like cardiovascular diseases (CVDs) [18],
several neurological disorders including depression and memory loss [19], rheumatoid arthritis, kidney
diseases, etc. [20]. It may facilitate and accelerate aging in PLHIV.

Neurocognitive impairment and HIV-associated neurological disorders (HANDs) were reported
in PLHIV displaying different symptoms, including HIV-associated dementia (HAD) [21]. an increase
in K/T ratio and a lower level of serotonin in more than half of the PLHIV were observed in our
study. Several plasma proteomics markers related to neurological diseases were also altered in
these patients. Transmembrane glycoprotein NMB (GPNMB), secreted frizzled-related protein 1
(SFRP1), defensin beta 4 (DEFB4A), tubulin polymerization-promoting protein family member 3
(TPPP3), amiloride-sensitive amine oxidase (copper-containing), (AOC1) and CD8A were decreased
in PLHIV compared to HC, while cadherin-17 (CDH17), bone marrow stromal antigen 2 (BST2),
6-pyruvoyltetrahydropterin synthase (PTS), Tumor Necrosis Factor (TNF)-related activation-induced



Metabolites 2019, 9, 210 12 of 16

cytokine (TRANCE), neurotrophin-3 (NT-3), and annexin A 10 (ANXA10) were increased in PLHIV
compared to HC. The role of each protein during HIV infection, and sometimes even protein function
itself are not always clear. For instance, DEFB4A, also known as human beta-defensin 2 (hBD-2) or
skin-antimicrobial peptide (SAP1), is an antimicrobial peptide with activity against both Gram-positive
and Gram-negative bacteria. Recombinant hBD-2 (and hBD-3) was shown to inactivate HIV-1
in vitro directly. Contrarily, elevated hBD-2 levels in connection with microbial translocation in the
gastrointestinal (GI) tract in HIV-infected individuals or genital infections in HIV-infected women may
also promote local inflammation and viral transmission [22]. Levels of hBD-2 were, however, lower in
our cohort of PLHIV compared to HC, which might indicate reduced anti-HIV-1 activity of defensins
in long-term treated HIV-infected patients. Whether that is due to lower viral replication or impaired
anti-HIV defense mechanisms needs further investigation. However, interferon-inducible antiviral
factor BST-2 (tetherin) that inhibits HIV-1 viruses was elevated in the PLHIV group [23,24]. Of note,
elevated BST2 is a plasma marker of colorectal carcinoma [25].

PLHIV exhibited distinct changes in plasma EAA levels when compared to HC. Out of nine EAAs,
the levels of eight were lower in PLHIV, essentiality defining that all the EAAs must be derived from
exogenous sources, mainly via diet. Lower levels of EAAs in PLHIV, thus, indicate that either these
subjects were suffering from protein malnutrition (dietary intake below requirement), or the intestinal
absorption of these amino acids was compromised when dietary protein intake was optimal to sustain
the plasma amino-acid balance. Although no nutritional protein intake data for the study groups
are available, BMI index and the food habits from the study cohorts indicate no tangible differences
between the two study groups; thus, the plausible involvement of low protein intake as the causative
factor in plasma amino-acid imbalance is minimal. Therefore, impaired uptake of these amino acids
in gut epithelia could be a potential causative factor in relation to chronic gut inflammation in HIV
following ART [26] or cART-mediated inhibition of amino-acid uptake by enterocytes in systemic
metabolic disorder. This requires further in-depth investigation to mechanistically establish as to why
PLHIV suffer from such an EAA imbalance.

Amino acids further correlate with a cluster of proteins that includes several interleukins (ILs),
and these ILs are strongly associated with each other. Of note, only IL-15 showed significantly different
levels in PLHIV compared to HC; IL-6, IL-10, and IL-18 did not. Several earlier studies were aimed
at deciphering the roles of proinflammatory cytokines, for example, IL-6, in muscle turnover/muscle
wasting. Both muscle synthesis and breakdown might be negatively affected by IL-6, but the severity
of the impact is relatively higher on the former, resulting in increased net muscle breakdown. Also,
IL-6 might increase AA demands of other tissues than muscle resulting in decreased AA levels in
plasma. Although the exact mechanisms remain unclear, it can be concluded that cytokines can initiate
essential changes in secondary mediators and clinical complications, causing muscle wasting [27,28].
IL-18, as another example of the interplay between cytokines and cell metabolism, was described to
upregulate nutrient transporters in natural killer (NK) cells causing metabolic changes to support NK
cell proliferation [29]. Therefore, the role of cytokines in AA metabolism, both in healthy individuals
and in states of inflammatory diseases, remains unclear, and, from this study, it was found to be
changed in HIV infection and conditions of antiretroviral therapy.

Another cluster of proteins, including several chemokines, is correlated with ceramides and
sphingomyelins both of which belong to the class of sphingolipids. Indeed, sphingolipids were
described as lipid mediators that are involved in diverse cellular functions, including immune cell
trafficking and inflammation. Ceramides are central sphingolipid metabolites that are associated with
proapoptotic and inflammatory signaling. As such, they induce inflammatory responses and regulate
immune cell functions [30,31]. The exact association of cytokines and chemokines with the metabolites
still needs to be elucidated.

The present study has some limitations that are worth mentioning. Firstly, the sample size
was relatively small. The traditional approaches are not easily transferable due to the top-down
hypothesis-free characteristic (untargeted approach) of -omics studies. However, our analysis showed
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that, even in a small number of patients, untargeted metabolomics has the power to separate the groups
while using the top 30 metabolites. Secondly, as adherence is one of the biggest problems in low- and
middle-income countries (LMICs) and the PLHIV included in the study were one of the best adherent
groups of HIV-infected individuals, the result may not reflect what was seen in non-adherent patients.

4. Materials and Methods

4.1. Study Cohorts

The present study included HIV-1 positive individuals with successful long-term ART for more
than five years (n = 22, PLHIV herein) and age-, sex-, and lifestyle-matched HIV-1 negative healthy
individual without any chronic illness (n = 22, HC herein). The participants were screened from a
larger cohort of 553 individuals attending a tertiary care ART Center for routine standard of care
at the Government Hospital for Thoracic Medicine (GHTM), Chennai, India. The inclusion criteria
were HIV-1 positive status, stable CD4 counts for the past 24 months, and >90% treatment adherence.
Participants were excluded if there were pregnant women, or patients who had any opportunistic
infection or major psychiatric illness, with co-infections like active tuberculosis, and co-morbidities
like diabetes mellitus and obesity, with evidence of cardiovascular diseases or any chronic illness,
illicit drug usage, and alcohol consumption. HIV-negative samples were collected from age-, sex-,
food habit-, and lifestyle-matched healthy individuals from in and around Chennai, India. A single
non-fasting blood sample was collected. The study was approved by the Institutional Ethics Committee
of the National Institute for Research in Tuberculosis (NIRT IEC No: 2015023 and TRC IEC No:
2011001) and Institutional Review Board Committee of Government Hospital for Thoracic Medicine
(GHTM-27102015). Informed consent was obtained from all participants according to the guidelines of
the institutional ethics committee.

4.2. Sample Preparation and Ultra-High-Performance Liquid Chromatography/Mass Spectrometry/Mass
Spectrometry (UHPLC/MS/MS)

Untargeted metabolite profiling was carried out by Metabolon Inc. (Durham, NC, USA) using
ultra-high-performance liquid chromatography/mass spectrometry/mass spectrometry (UHPLC/MS/MS).
Plasma (100 µL) was mixed with methanol to recover chemically diverse metabolites after precipitating
proteins. The methanol extract was divided into four fractions: two for analysis by two separate
reverse-phase (RP)/UPLC/MS/MS methods with positive ion mode electrospray ionization (ESI), one for
analysis by RP/UPLC/MS/MS with negative ion mode ESI, and one for analysis by HILIC/UPLC/MS/MS
with negative ion mode ESI. The MS analysis alternated between MS and data-dependent MSn scans
using dynamic exclusion. A pooled sample was created by taking a small aliquot from each of the
samples, which served as technical replicates in the assay, whereas pure water samples served as a
process blank, and a cocktail of quality control (QC) standards (Metabolon) was spiked into every
standard sample to identify the instrument variability. The instrument variability determined by
calculating the median relative standard deviation (RSD) for the internal standards was 4%. The samples
from the two groups were randomized across the platforms, and internal standards and process blanks
were added to each sample prior to injection into the mass spectrometers

4.3. Data Extraction, Compound Identification, and Quantification

The raw data extraction, peak identification, and QC process were performed using Metabolon
proprietary hardware and software. The metabolites were identified using a proprietary in-house
library based on standards that contained the retention time/index (RI), mass to charge ratio (m/z), and
chromatographic data (including MS/MS spectral data) on molecules present in the library. Additional
mass spectral entries were created for structurally unnamed biochemicals, which were identified by
their recurrent nature (both chromatographic and mass spectral). Peaks were quantified using the area
under the curve. The biochemical data were normalized for the volume of plasma.
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4.4. Plasma Proteomics Profiling

Plasma proteomic profiling was performed using proximity extension assay (PEA) technology
(Olink Bioscience AB, Uppsala, Sweden). We selected the Olink® inflammation panel that includes 92
inflammation-related protein biomarkers and a neuro-exploratory panel that consists of 92 proteins for
neurology-related diseases. The details of the markers available, their analytical range, and their lower
detection limit in each panel are available at https://www.olink.com/resources-support/document-
download-center/.

4.5. Statistical and Bioinformatics Analysis

Log-transformed and volume normalized data were used for standard statistical analysis. Feature
ranking process using random forest algorithm was executed using R package randomForest. Welch’s
two-sample t-test and correlation analysis were performed using R package stats. Volcano plots and
heatmaps were generated using R package ggplot and gplots, respectively. CIRCOS software package
was used to create a circos plot, and the bubble circos plot was created using the R packages graph and
igraph. A p-value < 0.05 and a false discovery rate (q) < 0.10 was considered as significant. Metabolite
and pathway networks were created with Cytoscape ver 3.7.1 [32].

5. Conclusions

In conclusion, the plasma metabolome of PLHIV on ART was significantly different from that
of age-, sex-, and lifestyle-matched HIV-negative controls despite a median duration of nine years of
treatment. Metabolic abnormalities were observed in amino-acid levels, energetics, and phospholipids
and complex lipids, which may reflect known differences in lipoprotein levels in PLHIV that can
resemble metabolic syndrome (MetS). Chronic metabolic disorder and an indication of oxidative stress
can contribute to the development of age-related diseases and can accelerate the aging process in
PLHIV. Combining the data from our recent study on plasma biomarkers of inflammation [14] and
the present metabolic profile indicates that that PLHIVs on long-term therapy are at higher risk of
inflammaging and age-related inflammatory diseases. With the advancement of the high-throughput
metabolomics platforms and the use of less toxic drugs in clinical practice, further studies are under
way to identify the metabolic network that is affected by HIV infection and/or antiretroviral treatment
which could be of interest for therapeutic intervention in HIV-infected individuals.
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Figure S1: Principal component analysis (PCA). The PCA identified separation between HC and PLHIV samples
with PLHIV samples separating to the north and east of HC samples. There was also some separation of samples
in the PLHIV group based on treatment type: TDF/3TC/EFV (TLE) and AZT/3TC/NVP (ZLN); Figure S2: Random
forest analysis using all metabolites (unnamed and named); Figure S3: Principle component analysis of PLHIV-TLE
vs. PLHIV-ZLN using the top 30 metabolites. Figure S4: Significant metabolites in lipid metabolism. Fold change
indicated changes in PLHIV compared to HC. Supplementary Data file 1: The significant comparisons presented
in Figure 2 (Venn diagrams)
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