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Abstract

This article mainly concerns with mathematical modelling in medicine. There is one area
in medicine namely pharmaco- kinetics which have already been mathematicized. There
are large areas in medical science which are not amenable to mathematical treatment,
and modelling constantly endeavour to widen the areas to which mathematical techniques
can be applied for gaining a better insight, and help deepen our understanding of those
areas which have already been mathematicized. The skills needed to be successful in
applying mathematics are quite different from those needed to understand concepts, to
prove theorems or to solve equations. The difficulty is not in learning and understanding
the mathematics involved but in seeing where and how to apply it. In this paper an
attempt is made to demonstrate the essentials of mathematical modelling without going
deep in to the details on specialised topics.

Introduction

Mathematics is a powerful, flex&
Language, models are representations and
mathematical models are representations
framed in mathematical terms. A good
metaphor for mathematical model is a map.
Models are representations for a purpose and
some knowledge is required to build and use
them. Medical theories entail a concern with
among other things, generality, precision and
parsimony. The knowledge required for
mathematical model building includes good
intuition and ability to abstract, some
knowledge of a range of models, some facility
with the manipulation of the mathematical
representations, an ability to assess critically
the models, some flair and modesty. In this
article, an attempt is made to give a brief
introduction to mathematical modelling to get
an insight into the problems of medical
sciences.

Early Expositions of the
Methodlogy of Modelling

Most of the early developments in
methodologies are due to physical sciences.
Klamin (1971) proposed a five stage model of
the problem solving process. The stages being
recognition, formulation, solution, computation
and explanation. Klamin described problem

solving as a linear process starting at stage one
and proceeding to stage five at which point the
problem is solved. Lin (1976) added the
evaluation of modelling process as sixth stage.
In a subsequent paper Lin (1978) addressed to
another important concept of a range of
models instead of a single best model.

Wood (1969) described modelling
process as an iterative process with evaluation
of the results in the light of obsenable reality
leading to modification of the model and
repetition of the stages - a form of parameter
identification problems. Hall (1972) further        
developed the iterative methodology and Bajpai
et al (1975) used a flow block diagram to
illustrate their concepts of methodologics of
mathematical modelling. A f u r t h e r
improvement in this direction is due to
d’Irveno and McLone (1977) where approach
is to start by constructing the simplest model.
If this is inappropriate then go back and make
the model more sophisticated usually by
dropping or altering one or more of the
assumptions. A novel treatment of modelling
process by Penrose (1978) consists of six stages
in a circular progression His representation is
reproduced in Fig. 1.

The boxes are numbered and joined by
arrows to indicate the normal direction of
travel from one to another, but it is usual to
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return to some of the boxes several-times as
one’s ideas develop. A good account of
complex linkage methodology of mathematical
modelling was given by Clements (1989).

In this article model building is 
considered within the broad methodologies
having epistemological, substantial, technical
and purposive components. Within the
epistemological component, criteria for the
construction and evaluation of the models are
set forth. Within the substantial components the
nature of theories, its theoretical terms and the
nature of relevant data are formulated. The
technical component deals with the nuts and
bolts of modelling - the mathematical systems
used, their properties, measurement, and
estimation. Within the purposive component,
we discuss the goals of the modelling effort.
These include explanation, description and
explication. They also include a consideration
of the uses of a model. These components are
highly interrelated.

Classification of models : Mathematical models
are frequently co-ordinated by three
distinctions: The first differentiates, process
models from structural models, the second
deterministic models from probabilistic models,
and the third, using discrete from continuous.
In principle, an eight-cell table can be 
constructed and each cell fitted with
mathematical models sharing the criteria
defining the cell.

understand the structure of systems relations.
The tools used include graph theory, matrix
algebra, groups, semi groups., Boolean algebra,
algebraic topology. Statistical models are used
to model processes whose outcomes are
governed by a probabilistic mechanism(s).
Deterministic models eschew stochastic
mechanisms in favour of deterministic
mechanisms and relations. Process models may
be deterministic or stochastic, but structural
models tend to be deterministic.

The distinction between mathematical
models and statistical analysis is a very bluned
one. Formal  approaches  can and do   
incorporate error specification which other
approaches generally do not. This informs
estimation. Second, the properties of the
statistical tools are stated and established
mathematically. Finally, new mathematical
models and their uses generate estimation
problem and statistical questions.

The Theory, Model and Data Mangle : This
triangle provides a method for selecting models
best suited for a substantive problem where
skill shows alternative model candidate6 and
selection of most. fruitful models. There are
three pairs of mappings - between theory and
model, between model and data and between
theory and data and all are important.

The theory - model linkage is
concerned with expressing a congruence
between a theory and its representation in a
mathematical model The theory has to map
into the model with little distortion or loss.
Deductively, there is a mathematical
formalization of the theory while inductively
this can be a formal generalizaton of the
theory. The mathematical model then has to be
useful. These results can be mapped to theory
and data. Deductively model maps to data by
specifying or predicting empirical outcomes.
Also deductively mathematical results map to
theory by specifying theoretical implications of
the derivations through mappings linking theory
and model. The theory, the model and the data
have to make sense and be consistent with one

Process models explicitly, attempt to
model the changes and provide an

another - which is the nub of evaluating models

understanding of the mechanisms of change.
(Doreian, 1987).

Among the frequently used tools are
differential equations and difference equations.

Metaphor, Analogy and Model: There are no

Structural models attempt to represent and
clear cut simple definitions for the terms like

   metaphor, analogy and model, but although
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they are by no means synonyms, they do share
certain features. Broadly speaking it can be
said that they all attempt to enhance our
understanding of new information in terms of

 what is already familiar. According to Sutton
(1978), "Analogies are extended similes in
which an attempt is made to trace multiple
points of comparisons, Metaphors arc ... less
explicit and much more mentally teasing ...
forcing the hearer to search among his
associated ideas for possible connections and,
a model can be thought of as an extended
metaphor". 

concentration is proportional to the
concentration of the drug in the blood stream.
In mathematical terms

(3.3)

where k is a positive constant. Experiments
have. shown that (33) is a good approximation
to reality for many drugs, the most important
being penicillin and streptomycin

Having determined the constant k for
a particular drug we now use equation(3.3) as

An Applications of Modelling with
Differential Equations

a model. Suppose the patient is given an initial
dose yo, which is assumed to be instantaneously
absorbed by blood at time t = 0 resulting in

represents a vast variety of situations in medical
sciences. Problems in population growth, drug
absorption and elimination, alcohol absorption,
water cooling carbon dating etc can be
modelled by equations of type (3.1). Once this
differential equation has been solved we have
effectively solved numerous problems. The
solutions to the above problem can be
expressed in the form

y = yo exp (kt) (3.2)

-k showing that the drugs’ concentration decays
exponentially. After a fixed time T, a second
dose yo is administered. Just before the dose,
the amount in the blood is given by

Just after the second dose, at time
T = T+

where yo is a initial value. The behaviour of the = yo (1+exp(-kT)) (3.6)
solution depends on the sign of the constant k.
If k is positive we have exponential growth, if The new quantity decays according to
k is zero, y remains equal to its initial value, law (33) with initial condition
and if k is negative we have exponential decay,

y = yo (1 + exp(-kT)) at t = T

The study of the way in which a drug Thus for t > T

loses its concentration in the blood of a patient
is fundamental to pharmacology, The
'dose-response’ relationship plays a vital role in Again giving the patient a dose yo at t = 2T
determining the required dosage level and the      results in 
interval of time between doses for a particular
drug.

y ( 2T + )

Suppose y = y(t) represents the (3.8)

quantity of drug in the blood stream at time t.
The simplest way to model such behaviour is
assume that the rate of change of the

Again solving (33) with
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y = yo (1+exp(-kT)+exp(-2kT))

at t > 2T gives

(3.9)

 y(t) = yo (1 + exp(-kT) + exp (-2kT)
exp(-k(t-2T))      (3.10) 

Continuing this way

y(nT+) = yo (1 +exp(-kT) + .... +
exp(-nkT) (3.11)

for n= 1, 2, . . . . .

y(nT+) = yo (1-exp(-(n+1)kT))/
(1 -exp( -kT) )  (3.12)

As n gets larger, exp(-(n+1)kT -> 0 so that

y(nT+) = yo / (1-exp(-kT))

Since this is independent of n, the model
predicts that the quantity of drug is tending to
a saturation level say Ys, where

Ys = yo / (1-exp(-kT)) 

This formula can be used for
determining (i) the required time interval T,
between doses for a given dose yo and
prescribed final level Ys. (ii) the dose level yo
required to obtain a final dose level Ys with a
prescribed interval between doses, T.

Discussion

Since the situations in medical
sciences are quite complex, one should have
some insight into the problem before he
attempts to formulate a new mathematical
model. A good review in this aspect has been
given by Kapur (1985). Once a model is
formulated  its consequence can be deduced by
using mathematical techniques and the results
can be compared with observations. The
discrepancies between theoretical consideration
and observations suggest further improvement
in the model as suggested by Clements (1989)
and Penrose (1978). This process is repeated
till a readily satisfactory model is obtained. It
is important to realise that learning to apply
mathematics is a very different activity from
learning mathematics. There is no theory to
learn mathematical modelling and there are
only a few guiding principles. There are many

examples of very simple mathematics giving
useful solutions to very difficult problems in
biomedicine, although generally speaking the
complexity of the problems and the required
mathematical treatment go hand in hand There
is growing fraternity of biomedical scientists
involved in mathematical modelling now. Many
journals cater to a large extent for the needs of
mathematical modelling and three of them
need mention are : (i) Applied Mathematical
modelling (ii) International Journal of
Mathematical model&g and (ii) International
Journal of Mathematics and Computer
simulations. To conclude, we quote

“All knowledge is, in the final analysis,
History,

All Sciences are, in the abstract,
Mathematics’.
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