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Abstract: The time duration between HIV seroconversion to AIDS known as Incubation 
period is very long and highly variable across groups. Several models for incubation 
period distribution were studied by many author. In this paper we propose new 
approaches to model the distribution of the incubation period of HIV/AIDS epidemic 
using the stages of the disease, the threshold level and cumulative invasion of the 
immune system. But each model has its own limitations. 
 

1. INTRODUCTION 
 
The HIV incubation period is the random time between the HIV infection and the on set 
of clinical AIDS symptoms. The probability distribution of this non-negative random 
variable is known as HIV incubation period distribution. Medley et al., (1987) showed 
that the incubation period of HIV is known to be very long and it is likely variable within 
and between cohorts. 
 
The analysis of incubation period is very important in AIDS epidemic studies.  
Incubation period distribution is assumed to be exactly known in backcalculation 
methodology. Several authors including Kalbfleisch and Lawless (1989), Jewell (1990), 
Rosenberg and Gail (1990), Hethcote et al., (1991), Bachetti et al., (1993), Brookmeyer 
and Gail (1986, 88, 94), Mariotti and Cascioli (1996) and Tan (2000) have observed that 
backcalculation estimates are very sensitive to the choice of incubation period 
distribution.  Anbupalam et al., (2002), Anderson et al., (1989), Soloman and Wilson 
(1990), Brookmeyer 19991, 96), Longini et al., (1999), Rosenberg and Gail (1990), 
Becker and Marschner (1993), Lawless and Sun (1992), Liao and Brookmeyer (1995) 
and Tan et al., (1996) including several others have shown that the HIV incubation 
distribution is significantly affected by age, treatment by antiviral drugs and other 
opportunistic infections.  Hence for estimation of the HIV infection and projection of 
future HIV prevalence and AIDS, it is very much important to study the HIV incubation 
distribution under different conditions. 
 
In this paper some of the probability distributions that were used in the literature for 
modeling incubation period are presented.  Some new models for incubation period are 
also proposed. 
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2. STATISTICAL MODELS FOR INCUBATION PERIOD 
 
The incubation period models are similar to survival models based on non-negative 
random variables and can be fitted using either parametric or semi-parametric approach.  
Here we restrict our attention to only parametric models for incubation period. 
 
Weibull and Gamma Models 
 
Weibull and gamma models are the most commonly used models for many real data 
applications and in particular for backcalculation approach.  Between the two, Weibull 
model is a popular candidate for HIV incubation period because of its nice properties 
viz., proportional hazard as well as accelerated failure time. 
 
 The Weibull distribution function is given by       

                                         
 
 The density function is given by  

 
The hazard function is given by 

                                
 
The hazard function is increasing with t if α > 1 and decreasing if α < 1. The 

Weibull model reduces to negative exponential model is α = 1 and has the constant 
hazard rate for this choice.  Naturally Weibull models with increasing hazard (α > 1) 
have been in many studies for modeling incubation period. 

 
The earliest studies of Weibull incubation period have been attempted by Lui et 

al., (1986) and Medley et al., (1987). The study of incubation period distribution for 
transfusion associated AIDS cases is developed by Lui et al., (1986) and is given below: 

 

 
 
These parameter values correspond to a median incubation period of 4.3 years. 

Medley et al., (1987) studied incubation period of patients infected by blood transfusion.  
The fitted parameter values for the Weibull distribution are given in Table 1. 
 

Table 1 
Parameter values of Weibull model for patients infected by blood transfusion 

Patient group α λ 
Children (0-4 years) 1.9390 0.3843 
Adults (5-59 years) 2.3960 0.1077 



225            International Journal of Computer, Mathematical Sciences and Applications 
________________________________________________________________________________________________ 
 

Boldson et al., (1988) used gamma, Weibull and log-normal models for 
incubation time of cohort study for San Francisco AIDS cases.  The fitted Weibull model 
for their data is given by 

 
 
The Weibull HIV incubation model used by Anderson et al (1986) is given by 

 
Brookmeyer and Goedert (1989) used the Weibull incubation period distributions 

based on the study of haemophiliacs over 20 years of age.  The fitted Weibull model for 
their data is given by  

 
 
This estimate corresponds to a median incubation of 10 years. 
 
Based on 732 HIV-positive haemophiliacs enrolled in Italian registry, Chiarotti et 

al., (1994) estimated the incubation distributions assuming three different parametric 
models: uniform U1, uniform in three sub intervals U3 and truncated Weibull W1 under 
two approaches namely the median (M) and median of three random values (R). There 
are altogether six different approaches to estimate the incubation time of individuals.  
They found that the incubation time obtained using U1 and U3 is same. Therefore they 
reported only four estimates MU1, RU1, MW1, and RW1. The MU1 represents the 
incubation time ascertained by taking median of the interval (L, R) and RU1 refers to 
median of the 3 different estimates obtained on the interval (L, R). Similarly MW1, and 
RW1 can be interpreted with reference to Weibull model.  The estimates of the four 
models are given in Table 2. 

Table 2 
Parameter values of Weibull model for HID-positive haemophiliacs 

Model parameter Method of estimates 
 MU1 RU1 MW1 RW1

α 2.9 2.4 2.9 2.6 
λ 0.0654 0.0571 0.0699 0.0658 
Median incubation time (years) 13.5 15.0 12.6 13.3 
 

Munoz and Xu (1996), based on a Multicentre AIDS Cohort Study (MACS), 
obtain the following estimated Weibull model. 

  
 The median incubation period corresponding to the above model is 7.5 years. 
Other important studies which used the Weibull model for HIV incubation period 
include, Isham (1989), Kalbfleisch and Lawless (1989) and Rosenberg and Gail (1990). 
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The gamma distribution is another important parametric distribution used to 
model incubation period of HIV/AIDS. 
 
 The gamma density function is  
 

            
 
 The hazard function is 

 
 
 One of the earliest studies that used gamma model for incubation period of HIV is 
by Medley et al., (1987). The parameters estimates for the gamma models for adults and 
children are given in Table 3. 

Table 3 
Parametric values for the gamma models for adults and children 

     Patient group Κ σ 
Children (0-4 years) 2.669 0.911 
Adults (5-59 years) 2.473 11.001 

 
The parameter estimates of gamma model obtained by Boldsen et al., (1988) 

based on the San Francisco AIDS data are k = 3.130 and σ = 5.715 years.  
 
2.2 Log-logistic and Log-normal models 
 
The log-logistic distribution function is  

 
 
 
The density function of the distribution is 

 
 
The hazard function of the distribution is  

            
The earliest application of log-logistic models for incubation period of HIV among 
homosexual men was adopted by Lui et al., (1986). Lawless and Sun (1992) also used the 
log-logistic model for HIV incubation period. The estimates of the parameters obtained  
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by them are λ = 0.10 and υ = 3.08.  In addition to Weibull model, Chiarotti et al., (1994)  
used log-logistic model and generalized exponential model for their data.  The parameter 
estimates of the log-logistic model are given in Table 4. 
 

Table 4 
Parametric values of log-logistic model 

Parameters Methods of estimates 
 MU1 RU1 MW1 RW1

λ 0.0694 0.0621 0.0746 0.0704 
υ 3.0 2.6 3.0 2.8 
Median incubation period (years) 14.4 16.1 13.4 14.2 
 
 The log-normal distribution has been used by and Boldsen et al., (1988) for HIV 
incubation period. Study by Munoz and Xu (1996) have shown that log-normal 
distribution fits better than Weibull model. 
 
  The density function of the log-normal distribution is  
 

 
  

The distribution function is  

 
 
where 

 
 
denotes the cumulative distribution function of standard normal variate. 
 

The hazard function of the distribution is   

 
 
The parameter estimates obtained by Boldsen et al., (1988) are given by μ = 1.099 

and  σ = 0.322.  This estimate corresponds to a median incubation period of 3 years. The 
parameter estimates for log-normal model based on the study of Munoz and Xu (1996) is 
given by μ = 2.208 and σ = 0.683. This estimate corresponds to a median incubation 
period of 9 years.   
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The probability density function of generalized exponential distribution is  

            
 

The distribution function is   

 
 
The hazard function of the distribution is 

 
 
The parameter estimates for the above model by Chiarotti et al., (1994) is given in 

the Table 5. 
Table 5 

Parametric values of generalized exponential model 
  Parameters Methods of estimates 

 MU1 RU1 MW1 RW1

λ 0.1266 0.1000 0.1351 0.1220 
υ 4.2 3.2 4.2 3.8 
Median incubation time (years) 15.0 16.5 14.0 14.6 
 
The probability density function of the generalized log-logistic distribution is 
 

 
 
The distribution function is  
 

 
 

where                
 
and β(m1, m2) is beta integral.  The generalized log-logistic distribution reduces to log-
logistic distribution when m1 = m2 = 1. Singh and George (1987) and Singh et al (1988) 
have shown that the three parameters generalized log-logistic distribution with m2 = 1 fits 
better than the log-logistic distribution for data on cancer survival analysis.  Tan and 
Byers (1993) have also used the generalized log-logistic distribution as the incubation 
distribution in their simulation study on stochastic model for HIV epidemic in 
homosexual population. 
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Stacy (1962) introduced a generalization of gamma distribution with three 
parameters.  The density function of the three parameter generalized gamma distribution 
is given by    

                  
 
This model is a generalization of many survival distributions.  For example, the standard 
gamma density is obtained when k = 1.  The Weibull distribution arises as a particular 
case when α = k and also the density reduces to negative exponential when α = k = 1.  
Lawless (1980) has shown that the log-normal distribution can be obtained as a limiting 
case of the generalized gamma distribution. 
 
 Stacy has also given the convolution of independent generalized gamma 
distribution. But the explicit form of the density function is very complicated and 
therefore some special cases of the convolution have been used in the literature as 
survival models.  The convolution of exponential distribution has been used as incubation 
model for HIV. 
 
 Let X1, X2, ……….. Xk be the k independent exponential random variables with 

mean λ1.  Then the distribution  is a special case of the convolution of 
generalized gamma distribution.  The probability density function of T is given by 
 

                
 

where  
 
Longini et al (1989) used a staged Markov model to estimate the distribution and mean 
length of the incubation period from a cohort study of 603 HIV infected individuals who 
have been followed through various stages of infection. They used the generalized 
gamma model to describe the transition probabilities of the Markov model. The 
probability of going from a transient state i to a transient state k at time t is given by 

 
 
In this formulation of the model the incubation period covers three stages going from 
initial infection stage to the third stage of pre-AIDS symptoms.  The estimated parameter 
values for the incubation period distribution are k=3, λ1 = 0.4571, λ2 = 0.019 and λ3 = 
0.0159. The mean and median of the incubation period are 9.81 and 8.25 years 
respectively. 
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 In the same study Longini et al., (1989) formulated a six stage Markov model to 
describe the progression of HIV infection to ultimate death of the individuals. The 
parameter estimates obtained in their study are k=6, λ1 = 0.0764, λ2 = 0.0665, λ3 = 
0.0499, λ4 = 0.4290, λ5 = 0.0408 and λ6 = 0.0529. 

 
3. MIXTURE MODEL 

 
One way to accommodate the variation between-different groups of the population is by 
using mixture models. Suppose certain proportions of infected individuals p have an 
incubation period distribution F1(t) and the remaining proportions (l – p) have the 
incubation period distribution  F2(t). Then the incubation period distribution for the entire 
population of infected individuals is a mixture of F1(t) and F2(t) is given by 

 
 
The infection density function is given by 
 

 
 
 The above can be generalized to many groups of individuals with the mixture of 
incubation period density function is given by 

 
 
Auger et al (1988) considered a mixture of two Weibull densities for the incubation 
period of pediatric AIDS cases.  The mixture of two Weibull densities is given by  

 
 
         The parameter estimates obtained by Auger et al (1988) were p = 0.120, α1 = 3.540, 
λ1= 0.201, α2 = 1.160 and λ2 = 0.010. The mixture of two Weibull distributions was also 
used by Lui et al (1986) in a study of incubation period distribution of sample individuals 
drawn from San Francisco AIDS data. 
 

4. STAGING MODEL 
 
Under staging models the incubation period is considered to be comprised of stages. The 
progression from time of infection to AIDS was assumed to occur in 3 stages of 
Brookmeyer and Liao (1990). The stage 1 refers to HIV infection without immunology 
abnormalities, stage 2 is the development of pre-AIDS disease and stage 3 is the 
development of clinical AIDS. The incubation time of an individual by definition is the 
total time spent on stage 1 and 2. Therefore different models for these two stages can be 
assumed.  Let h1(t) and h2(t) denote the hazard functions of the two stages. The  
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convolution equation for the incubation period comprising of these two stages as given 
by Brookmeyer and Liao (1990) is   

 
 
Suitable changes has to be made in the above formulations to account for calendar time 
of infection. 
 
 Suppose the times spent on the two stages are not independent, then the time 
spent on the stage 2 can be conditioned on the time spent on stage 1. Under this case 
Mariotti and Cascioli (1996) have given the survival functions for the second stage as 

 
    
where u is the time spent on the first stage. The distribution function F2(·) in the 
convolution equation (33) should be suitably modified by using the survival function S2(·) 
given in equation (34). 
 

5. CHANGE POINT MODELS 
In this section, the author proposes a change point model for incubation period of HIV. 
Suppose the incubation time for an individual is t, it is reasonable to assume that between 
0 to t, there is a time point t at which the hazard of incubation changes. The point t may 
be the time after infection when the individual realizes the threat of AIDS and seeks some 
kind of medication. In the following sections some change point hazard models are 
proposed. 
 
5.1 Change point model with constant hazard  
 
Suppose the hazard before and after the change point is constant, then h(t) is given by  

 
 
 The survival function of the change point model is given by 
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The distribution function is given by  
 

 
 
The density function of the change point model is given by  
 

 
 
5.2 Change point model with varying hazard 
 
Let the hazard function before and after the change point be as given below. 

  
 
The survival function is given by 

 
 
The distribution function is given by 

 
 
The density function is given by 

 
 
5.3 Change point model with Weibull hazard 
 
Suppose the hazards before and after the change point is that of Weibull distribution then 
the hazard function of the change point model is given by  
 

 
 
The survival function is given by 
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The distribution function is given by 
 

 
 
The density function is given by 

 
 

6. IMMUNE INVASION LEVEL MODEL FOR INCUBATION PERIOD 
 
In this section the author propose a model for incubation period using the concept of 
invasion to immune system.  Suppose at time t = 0, a member tested for HIV positive for 
the first time, experiences a random N number of invasion before he shows clinical 
symptoms to AIDS. The number of immune invasions N experienced by the individual is 
assumed to follow a Poisson process with parameter λ(>0).  Let the probability that the 
individual who has already experienced n contacts up to a time t, shows the clinical 
symptom for AIDS in the interval (t, t + Δt) be given by   
 

 
 
Then the incubation period of the individual T can be obtained as follows: 

 
Therefore f(t) Δt denotes the probability that the individual becomes an AIDS case in the 
interval (t, t + Δt) after experiencing n invasions. We assume that the system undergoes at 
least one invasion before the individual become AIDS in (t, t + Δt).  Hence  
 

    
 
Taking Laplace transform on both sides of (2.5.3), we get 
 

 
 
By using partial fraction method, the above equation can be written as 
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Inverting the equation (51) we obtain the probability density function as 
 

 
 
The density function is unimodel and is given by 
 

 
 
The distribution function can be written as 
 

 
 
If λ = μ, then  

 
 
The hazard function of equation (55) is given by  

 
 
It can be noted that the hazard rate is increasing function of t. 
 
Discussion: Back calculation is ividely held as the most statistically reasonable approach 
to predict the future AIDS epidemic. Several alternative approaches for both modeling 
incubation distributions and estimating past HIV infection curves of HIV/AIDS epidemic 
have been presented.  Three new approaches will be broadly effective in providing 
quantitative estimates of HIV prevalence and AIDS incidence projections. It is not 
possible to remove all uncertainty surrounding the epidemic but the new model can 
provide consensus decisions for future planning. 
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