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Molecular epidemiology, the study of distribution
and determinants of disease occurrence in human
populations using molecular techniques, is a blend
of molecular biology and epidemiology.
Epidemiologic investigations that incorporated DNA
fingerprinting of the isolates of Mycobacterium
tuberculosis have been used to provide novel
information about the spread of tubercle bacilli in
miniepidemics and outbreaks, to analyse the
transmission dynamics of tuberculosis (TB) and to
distinguish exogenous reinfection from endogenous
reactivation.  In addition, ME is also being used to
identify the source of laboratory contamination, to
determine the risk factors for TB transmission in a
community, and to track the geographic distribution
and spread of clones of M. tuberculosis of public
health importance.

Molecular epidemiology of tuberculosis

Sujatha Narayanan

Department of Immunology, Tuberculosis Research Centre (ICMR), Chennai, India

Received March 11, 2003

Molecular epidemiology (ME), a blend of molecular biology and epidemiology, is very useful to
study the spread of tubercle bacilli in mini epidemics, outbreaks, to analyse the transmission
dynamics of tuberculosis (TB) and to determine the risk factors for TB transmission in a
community.  ME has a great role in distinguishing between exogenous reinfection and endogenous
reactivation.  In the laboratory, molecular epidemiology can be used to identify cross
contamination. Many new DNA typing methods have been introduced after the initial
introduction of restriction fragment length polymorphism (RFLP) in 1993.  An internationally
accepted, standardized protocol for RFLP typing of the Mycobacterium tuberculosis complex
using IS6110 was published in 1993 and is still used today.  Most of the newer DNA typing
methods are PCR based and microarray based methods are also available.  This will enable
individual strains of M. tuberculosis or clonal groups to be identified by specific phenotypic
traits.  ME will continue to be a useful tool in future to measure the impact of any public health
intervention strategy for control of tuberculosis in the community.
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Fingerprinting of M. tuberculosis exploits
restriction fragment length polymorphism (RFLP) of
chromosomal DNA.  The amplified illustration of the
procedure is shown schematically (Fig.).  Variation
in the array of fragments generated by specific
restriction endonucleases are called RFLPs.
However, restriction enzyme digestion generates
many bands in the gel which make comparison of
many gels nearly impossible.  To simplify analysis
it is possible to perform Southern blotting of
electrophoretically - separate DNA followed by
hybridisation with probes to determine the presence
and size of fragments containing specific genomic
DNA restriction fragments.

Repetitive elements called insertion sequences (IS)
are present in various sites and variable copy numbers
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Fig. Restriction fragment length polymorphism (RFLP) can distinguish two isolates of Mycobacterium tuberculosis. The chromosomal
DNA from 2 clinical isolates of M. tuberculosis were digested with restriction enzyme. Pvu II. The resulting DNA fragments were
run on agarose gel electrophoresis along with molecular weight marker. The DNA fragments were transferred from the agarose gel to
nylon membrane by southern blotting and hybridized with non radioactively labeled IS 6110 repeat element.
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in the genomic DNA.  These ISs serve as probes,
allowing comparison of the number and size of
fragments containing an IS.  The most commonly
used insertion sequence or repetitive element is
IS6110 which is found throughout the M. tuberculosis
complex.  It was originally hypothesized that IS6110
insertions occur randomly1 but that was not true in
the sequenced H37Rv strain of M. tuberculosis2,3.

Internal and external molecular weight standards
introduced adjacent to the specimen tracks facilitate
accurate computer-assisted analysis of IS6110 RFLP
patterns.  The RFLP band patterns of strains may be
compared visually or scanned optically by a
computerized reading system and matched to a
reference library of strain profiles2,4.  When used in
conjunction with standardized international databases
and computer-assisted analysis, this approach allows
comparisons of strains between different laboratories
in widely separated geographical regions.  Two
computerized systems, Gel compare version
4.2 program (Applied Maths Inc. Gent Belgium) and
(Bio Image whole Band Analyser, version 3.3
Millipore, Ann Arbor MI USA) have been developed
specifically for the analysis of RFLP patterns of M.
tuberculosis.  While these systems are suitable for
the study of large numbers of isolates, they are
expensive and not widely available.

DNA typing methods

An internationally accepted, standardized protocol
for RFLP typing of the M. tuberculosis complex using
IS6110 was published in 1990 and is still used today5.
Between 0-25 copies of IS6110 are found in almost
all strains of M. tuberculosis complex6,7 and is not
known to be present in other organisms. IS6110
elements differ in their position and number and this
variability is exploited to distinguish between strains.

Though IS6110 RFLP typing is the Gold standard
for typing strains of M. tuberculosis, it has several
disadvantages.  It is a slow, cumbersome, labour
intensive and technically demanding technique
requiring relatively large amounts (i.e., 2 µg) of high
quality DNA from each strain of M. tuberculosis, an
amount that can only be extracted from a large
number of bacteria grown from clinical material.  The

culture of M. tuberculosis takes 4-8 wk. Also, this
method has poor discriminatory power for isolates
with less than 6 copies of IS6110 (<6 bands in the
RFLP pattern).  To avert the poor discriminatory
power of this probe, supplementation of the technique
with other probes has been adopted.  Various
repetitive DNA elements that contribute to strain
variation have been discovered in M. tuberculosis8-10.
Polymorphic GC repeat sequence (PGRS), and major
polymorphic tandem repeat (MPTR) have a broad
host range besides M. tuberculosis complex. Among
the various repetitive sequences only IS6110 and
IS1081 are insertion sequences and the others are
short sequences with no known function or
phenotype.

The DR region in M. tuberculosis complex strains
is composed of multiple direct variant repeat sequence
(DVRS) each of which is composed of a 36-bp DR
and a non repetitive spacer sequence of similar size.
It has been shown that there is extensive
polymorphism in the DR region by the variable
presence of DVRS and this polymorphism is used in
the epidemiology of tuberculosis.  The DR locus is
presently the only well-studied single locus in the
genome of M. tuberculosis showing considerable
strain-to-strain polymorphism.  The nature of
polymorphism has been used to genotypically classify
clinical isolates by DR-RFLP to define
epidemiological relationships11-14.

Spoligotyping is a polymerase chain reaction
(PCR)-based method that interrogates a small DR
sequence with 36 bp repeats interspersed with short
unique, non repetitive sequences 35-71 bp in length.
All these spacer nucleotides between the direct
repeats can be amplified simultaneously using one
set of primers.  The presence or absence of spacers
in a given biotinylated strain is determined by
hybridization with a set of 43 oligonucleotides
derived from spacer sequences of M. tuberculosis
H37Rv.  Although the overall discriminatory power
of spoligotyping is lower than that of IS6110 typing15,
it has the specific advantage of higher discrimination
of strains with low copy numbers of IS611016.

The multiple synthetic spacer nucleotides are
covalently bound to a nylon membrane in parallel
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lines. Hybridization is performed in a 45-lane blotter
by applying PCR products of 2X Sodium chloride
Sodium Phosphate Ethylene diamino tetracetic acid
(SSPE) in the wells.  After washing the membrane,
the bound fragments are revealed by
chemiluminescence by incubating with horse radish
peroxidase labeled streptavidin and the
autoradiogram is developed.

The most commonly used secondary markers are
the polymorphic guanine/cytosine-rich repetitive
sequences (PGRS), a triplet repeat of GTG and the
major polymorphic tandem repeat (MPTR).  The
PGRS typing system uses the polymorphic GC-rich
sequence contained in the recombinant plasmid
pTBN12 as a probe17,18.  Two other nucleic acid-based
typing systems for M. tuberculosis have been
described.  Pulse field gel electrophoresis (PFGE)
allows simplified chromosomal restriction fragment
patterns to be generated without using probe
hybridization methods.  In this method, DNA is
cleaved with restriction endonucleases that cut DNA
infrequently, creating large fragments of
chromosomal DNA19.  The restriction fragments are
then separated using sophisticated and expensive
electrophoresis equipment.  This method
discriminates the strains with low IS6110 copies.
There is discrepancy between PFGE and IS6110 in
classifying strains with IS6110 high copy numbers19.

PCR-based methods

PCR-based methods are easier to perform, require
relatively smaller amounts of genomic DNA and even
can be performed on non viable organisms or directly
from clinical specimens relative to RFLP
genotyping20-22.

Many PCR based typing assays have been
developed in the recent past based on IS6110 as the
target. Ligation mediated PCR23  mixed linker PCR25,
hemi-nested inverse PCR, IS6110 inverse PCR,
IS6110 ampliprinting and double-repetitive (DR)
element PCR24 are among the techniques developed
to date. Spoligotyping is a PCR based method which
has been described before.

 Automated detection of DNA fingerprints was
achieved using mixed-linker PCR26.  Mixed-linker

DNA fingerprint analysis was attempted using
M. tuberculosis isolates spotted onto filter paper and
concluded that the results were identical to those
obtained from conventional culture material27.  The
other method fast ligation-mediated PCR (Flip) is
based on mixed-linker method and has the same
discriminating power but M. tuberculosis isolates can
be typed within 6.5 h.  Another method, ligation-
mediated PCR (LMPCR) uses the 5’ end of the
flanking sequence of IS6110 for amplification25,28.
Hemi nested inverse PCR method targets the insertion
sequence IS6110 and the upstream flanking
regions29,30,.  All these methods are based on IS6110
element and hence not useful for typing the isolates
with low copy numbers of IS6110.

Exact tandem repeats (ETRs) have also been used
for PCR-based strain typing assays31,32.  ETRs differ
from polymorphic repeat sequences by having a
variable number of tandem repeats ranging from
53 to 79 bp in length, which vary between strains
and between different species of the M. tuberculosis
complex.

A high resolution typing method based on the
variable number of tandem repeats (VNTR) of
mycobacterial interspersed repetitive units (MIRUs)
has been successfully employed in typing the
mycobacterial isolates yielding a resolution power close
to IS6110-RFLP.  MIRUs are short (40-100 bp) DNA
elements often found as tandem repeats and dispersed
in intergenic regions in the genome of the
M. tuberculosis complex33.  The strains vary in the
number of repeats at different loci.  Each typed strain
is assigned a 12-digit number corresponding to the
number of repeats at each MIRU loci, forming the
basis of a coding system that facil itates
interlaboratory comparisons34-36.  The technical
difficulty of sizing the multiple small PCR fragments
is overcome by combining multiplex PCR with a
fluorescence-based DNA analyzer37.  Relative to
IS6110 RFLP typing, MIRU VNTR profiling is fast,
appropriate for strains regardless of their IS6110
RFLP copy number and permits rapid comparison of
global strains using a binary data classification
system33.

Fluorescent amplif ied fragment length
polymorphism (FAFLP) typing is a whole genome
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approach that involves digesting genomic DNA with
two restriction enzymes (EcoRI and Msc I).  The
restriction fragments are linked to the adaptors using
a DNA ligase. Only particular restriction fragments
are visualized after PCR amplification because the
primer for the EcoRI adaptor sites contains the
selection bases ATC or G labeled with fluorescent
dyes and then amplifying the resulting fragments with
different fluorescent dye-labeled primers37. This
method is useful for discriminating low copy number
strains.

Kremer et al38 compared 5 different methods of
RFLP typing which employed IS6110, IS1081,
PGRS, the DR and the GTSS repeat as probes. Of
the PCR- based methods compared, VNTR typing,
mixed-linker PCR and spoligotyping were highly
reproducible between different laboratories.The
double repetitive PCR (DRE-PCR), IS6110 inverse
PCR, IS6110 ampliprinting and arbitrarily primed
PCR were not reproducible. Despite the development
of different typing methods, RFLP using IS6110 is
being widely used and considered the Gold standard
to which other methods are compared39.  Thus
implementation of multiple molecular techniques in
a single study provided better discrimination between
strains and insight for phylogenetic groupings40.
Today, most of the molecular epidemiologic studies
rely on IS6110 RFLP typing and a secondary typing
method such as PGRS or spoligotyping for isolates
with less than 6 bands in the IS6110 RFLP band
pattern.

There is rising interest in identifying relationships
between strains that have a specific phenotype such
as increased infectivity, virulence, or
hypermutability. Direct comparison of genomic DNA
sequences of strains of M. tuberculosis would be the
best way of quantitatively determining whether the
two strains are similar or different, but DNA
sequencing is still too expensive and complex to be
applied in practical situations to large numbers of
isolates. Currently, it is possible to analyze short
segments of DNA for sequence similarities and
differences. Genomic fragments can be amplified
using PCR, and an automated DNA-sequencing
procedure involving fluorescent dye-labeled
terminators can be used to directly sequence the PCR-

amplified DNA fragment41. This approach allows a
DNA fragment of 300 to 500 bp to be sequenced in
24 h. In future, improvements in automation of target
amplification and direct sequence analysis may lead
to practical implementation of this method in
laboratories.

Another approach is to evaluate the relatedness
of strains based on the whole genome sequence using
DNA microarrays and DNA chip technology. These
techniques allow simultaneous detection of genetic
variation at various genomic sites by analysis of the
amount and specific location of mycobacterial DNA.
Conceptually, they use oligonucleotide arrays
containing thousands of oligonucleotides on a limited
surface42.

Deletion microarray approach will potentially
provide information both on phylogenetic
relationships and information about specific
biologically relevant phenotypes. Briefly, the genome
of a strain is compared against that of a known,
sequenced reference strain, using a microarray. Any
deletions that have occurred will be detected in the
comparison. Since deletions rarely occur
independently at exactly the same chromosomal
locus, they can be considered unique and irreversible
genetic events. The number and distribution of these
deletions provide a genomic pattern that can be used
to construct phylogenetic relationships. The genomic
patterns can also be used to determine whether the
loss of specific genes is related to the phenotype of a
strain, such as its transmissibility or antigenicity.

Molecular epidemiology as a tool to identify
outbreaks and to analyse the transmission
dynamics of TB

Outbreak situation usually involves person-to-
person spread or simultaneous infection from a
common source.  By definition, all isolates involved
in outbreak of an infection would be expected to be
clonal. Non clonality, which is often easier to
determine, eliminates an isolate from consideration
in a specific chain of transmission.  Ideally, strain
typing will provide a clear, objective basis for
identifying the outbreak strain and distinguishing it
from epidemiologically unrelated isolates.  Many
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studies on TB have extended these assumptions to
define clusters of patients in the community based
on identical DNA fingerprinting patterns from the
isolates of M. tuberculosis.  Conventional TB contact
investigations use circuitous approaches to collect
information and to screen spouses, partners, other
household members, co-workers and increasingly
distinct contacts for TB infection and disease43.
Several studies have added molecular typing of the
isolates of contacts who were also TB cases, in order
to trace the source of infection.  Molecular
epidemiological data overlaid with conventional
epidemiology data would help in knowing the
transmission dynamics.  In a high incidence area in
Barcelona, Spain (163 TB cases/100,000 population),
there was 61.5 per cent concordance between the
DNA fingerprint results (IS6110 RFLP and PGRS)
and conventional contact tracing44.  In this study the
authors concluded that conventional contact tracking
was useful for identifying new TB cases, but it did
not provide much information about the chains of
TB transmission and how to block or prevent that.

In a five-year population-based study in the
Netherlands, contact investigations of persons in five
of the largest clusters identified epidemiological links
between them based on time, place and risk factors.
However TB transmission also occurred only through
short term, casual contact that was not easily detected
in routine contact investigations45.

In low-incidence areas such as San Francisco
(California, USA)43, Zurich45 and Amsterdam46, a
relatively small percentage (5-10%) of cases having
identical RFLP patterns were actually identified as a
contact by the source case.  This suggests that
unsuspected transmission of TB occurs and is not
easily traced by conventional contact tracing
investigations47. In a contact tracing study done at
Thiruvallur near Chennai, India, only 10 per cent
concordance was seen between conventional
epidemiology and molecular epidemiology using
IS6110 and DR probes14.  Among the patients in the
clusters having identical fingerprints by IS6110 and
DR, only 10 per cent could name the contact which
could be a source case14.

In summary, DNA fingerprinting is a useful tool
to confirm or rule out the possibility of recent TB
transmission between two or more persons.  It has
also shown that TB transmission can occur through
short, casual and unsuspected contacts.  Molecular
epidemiologic studies suggest that the traditional or
classical contact tracing approaches such as DNA
fingerprinting could be particularly useful to guide
contact tracing strategies in low incidence areas,
where its predictive value would be high.

Molecular epidemiological studies have provided
novel insights into the transmission dynamics of
tuberculosis48. Such an approach has shown that a
drug-susceptible strain of M. tuberculosis (the C or J
strain) which was first identified as causing a large
outbreak in 1990 in a homeless shelter49 has become
widely prevalent in New York city50.  The availability
of standardized genotyping technique for
M. tuberculosis and the existence of extensive
collections of fingerprints made it possible to do a
molecular epidemiological assessment of
tuberculosis transmission between different
geographic regions51.  Daley et al52 described 12 cases
of TB that occurred in a housing facility in San
Francisco, USA, among HIV infected people.  The
demonstration of transmission of M. tuberculosis in
nosocomial settings53-55, congregate living facilities52

and among persons at high risk such as the
homeless56,57 and those who are HIV infected54-55 has
been especially important. Fingerprinting in the
context of geographic studies has shown the
acquisition of M. tuberculosis of Tunisian or
Ethiopian genotypes by Dutch persons who resided
in Tunisia or Ethiopia58 as well as spread of the
organisms between Greenland and Denmark59.

Exogenous infection vs endogenous reactivation

Post-primary TB which occurs many years after a
primary infection, may develop as the result of
reactivation of the endogenous primary infection or
as a result of a recent exogenous infection.  In this
era of effective treatment regimens, the notion that
multiple episodes of TB in one patient are almost
always caused by endogenous reactivation may be
questioned.  It is now possible to characterize the
genotype of M. tuberculosis by DNA fingerprinting,
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which can show whether a new episode of the disease
is caused by infection with the same strain that caused
a previous episode or by a different strain. Thus,
molecular epidemiology using DNA fingerprinting
can determine the proportion of cases due to recent
infection and the proportion due to reactivation.

RFLP studies conducted in Hong Kong60 showed
that the patterns of 88 per cent of the isolates from
patients with relapses matched those for their pre-
treatment counterparts indicating a high frequency
of occurrence of infections caused by endogenous
reactivation of M. tuberculosis.  A study conducted
at the Tuberculosis Research Centre (TRC), Chennai
on pre- and post-treatment isolates by DR-RFLP
analysis indicated (69% of the isolates by DR probe
and 50% by IS61100) a high degree of endogenous
reactivation among patients who have relapses after
successful completion of chemotherapy61,62. Small
et al63 used IS6110 typing to trace exogenous
reinfection with multidrug-resistant M. tuberculosis
in patients with advanced HIV infection. Recently,
molecular epidemiological study undertaken in a
rural area near Chennai, India as part of the model
DOTS (directly observed therapy short course)
programme using fingerprinting with two probes
(IS6110 and DR) and cluster analysis revealed more
of endogenous reactivation than exogenous
reinfection in the community14. Similar observations
were made by the molecular biological study
conducted in New York City from 1989 to 199264

and in San Francisco, California during 1991 and
199243.

Laboratory contamination

It is very important to determine whether a group
of culture positive isolates represents a true outbreak
of TB or a pseudo outbreak based on false positive
laboratory cultures of M. tuberculosis.  DNA
fingerprinting analysis is a very good tool to identify
false positive laboratory cultures.  Earlier
investigations focused on the isolates of
M. tuberculosis that were processed together in
the laboratory and had identical IS6110 RFLP
patterns, but were from at least one otherwise
asymptomatic patient65,66.  In a study conducted in
New York City67, an isolate was collected from every

patient with a positive culture for M. tuberculosis
during a one-month period, including both incident
and prevalent cases, and RFLP analyses were
performed. The DNA fingerprinting of all
M. tuberculosis isolates from a 700-bed urban
hospital in Chicago, USA, revealed only one possible
instance of nosocomial transmission and five false-
positive M. tuberculosis cultures out of 183 patients68.
In another study69, isolates collected prospectively
over 5 yr from a municipal health department
laboratory, underwent DNA fingerprinting using
IS6110 and pTBN12 sequences, clinical and
laboratory records of all isolates with matching DNA
fingerprints and processed within 42 days of each
other, were reviewed, and 4.0 per cent of the culture-
positive patients were identified as probable or
definite false-positives. In a convenience sample of
isolates from three other mycobacterial laboratories,
12 per cent were found to be definite or probable
false-positive.  The reasons for laboratory cross-
contamination are careless specimen processing and
contaminated reagents69.  A small, but non-negligible
proportion of cases with laboratory cross-
contamination was detected in every institution that
looked for it70-73.  As a result, DNA fingerprinting is
now used in some settings to routinely evaluate all
specimens for possible laboratory cross-
contamination.

In general, laboratory cross-contamination should
be considered if isolates were cultured within one
week of each other and had identical DNA
fingerprints.  Laboratory contamination should be
suspected when M. tuberculosis is grown from smear-
negative specimens, from low-yield cultures, and
from patients who are otherwise asymptomatic.  A
single positive culture in clinically well patients with
negative acid fast bacilli (AFB) smears and no other
evidence of TB may not always need therapy.
Laboratory cross-contamination should also be
suspected when there is a sudden increase in culture
positive isolates, without an epidemiological or
clinical explanation.  For example, adopting more
rapid and sensitive methods may increase the
contamination rate.  The isolates should be analyzed
by reliable molecular typing techniques, and
compared with specimens that were originally
processed during the same time period.  Many
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investigators used IS6110 RFLP typing, VNTR
typing73 or spoligotyping74 to detect and evaluate
laboratory cross-contamination.

Simultaneous infection by more than one strain
of M. tuberculosis by RFLP

It has been understood from the recent reports that
a single patient could be infected with more than one
strain of M. tuberculosis at any given time as more
reports are confirming infections by multiple strains.
Phage typing method was used in the 1970s to detect
the presence of more than one strain (phage types) in
a single patient75-78.  Due to technical complexity of
the assay method, the results were not reliable.  With
the advent of newer methods of genotyping in early
nineties, like IS6110-based DNA fingerprinting
together with secondary typing methods, it is possible
now to precisely identify specific strains of
M. tuberculosis isolated from clinical samples.

Few reports have shown the simultaneous
infection with two or more strains of M. tuberculosis
by RFLP 79. Yeh et al80 demonstrated the existence
of simultaneous infection with two strains of
M. tuberculosis using IS6110 DNA fingerprinting,
based on the relative intensities of the band patterns.
Infections from multiple strains of M. tuberculosis
are sometimes mistaken to be due to laboratory cross-
contamination. It is important to identify “true” mixed
infections to gain insights into the patterns of
transmission of the disease in the community.
Molecular epidemiological approaches have provided
novel insights.  Adoption of more rigorous reporting
standards in studies of the molecular epidemiology
of tuberculosis would improve the comparability of
studies and help investigators to assess the
implications of their results81.

Risk factors and settings for recent transmission

Molecular typing techniques in combination with
conventional epidemiological methods, can be used
to identify the risk factors associated with recent
transmission.  Cases defined as patients whose
isolates have clustered RFLP patterns, and controls
are defined as patients whose isolates have unique
band patterns.  The risk factors that are associated

with recent infection are specific to a particular
community and others are common to TB patients in
geographical areas.  In San Francisco, among persons
< 60 yr of age, Hispanic  ethnicity, birth in the United
States and a diagnosis of AIDS were independently
associated with being in a cluster43. Specific
interventions were directed at persons with one or
more of the independent risk factors, and
consequently the proportion of TB cases that were
clustered decreased over time82.  In a recent study in
New York city birth outside the United States, age
> 60 yr, and diagnosis after 1993 were independently
associated with reaction of latent tuberculosis
infection (LTBI), while homelessness was associated
with clustering or recent transmission. TB among the
foreign-born persons was more likely to result from
the reactivation of LTBI among those who were not
infected with HIV82. The researchers recommended
that TB prevention and control strategies need to be
targeted to the large number of foreign born persons
in New York city who have latent TB infection.
However, HIV was not associated with clustering
among TB patients in a university teaching hospital
Rio de Janerio, Brazil83 and HIV was not a risk factor
for clustering among South African gold miners84.

The limited numbers of molecular
epidemiological studies conducted in India were
laboratory-based and comprised small numbers of
patients61,62.  The recent study from Tuberculosis
Research Centre14 was the first in India to combine
molecular and conventional epidemiologic
techniques to investigate the mechanism and risk
factors of transmission.  They reported several
characteristics of the molecular epidemiology of TB
in the rural settings at Chennai India using IS6110
and DR probes which differ from previously reported
findings in other settings.  Forty one per cent of
M. tuberculosis isolates harboured a single IS6110
copy.  Such a high proportion of single-copy isolates
has not been reported elsewhere except south India84.
The proportion of clustering in this study ranged from
9 to 38 per cent depending on whether single-copy
strains were excluded or included in the analysis.
Clustering was higher in older patients contrary to
the observation by many other investigators86-89.
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Geographical distribution and dissemination of
tuberculosis

There may be a link between geographic location
and IS6110 number.  Some isolates of M. tuberculosis
contains no or very few copies of IS6110.  One early
study based on 1S typing claimed that M. tuberculosis
strains from regions in Central Africa, where
tuberculosis is highly endemic, are generally related
to each other than isolates from the Netherlands,
where the transmission rate is slow and where the
majority of TB cases are presumed to be the result of
reactivation of LTBI90.

Several of the strains identified in outbreaks have
been associated with large clusters that are widely
dispersed both geographically and temporarily,
suggesting they are either more transmissible or they
are more likely to cause disease once transmitted than
are other strains. The most commonly cited and
reviewed example of the geographical dissemination
of a particular clone of M. tuberculosis is that of
Beijing/W strains91,92 which is a multidrug-resistant
strain of M. tuberculosis, responsible for causing
many cases of TB and deaths attributable to TB
among patients and health care workers in nosocomial
outbreaks and other institutional settings in New York
city during the 1990s93-95. This strain was later found
in other parts of USA.  By the late 1990s the W strain
was recognized as the member of Beijing genotype
family strains.  A study performed in Beijing, China
reported that 85 per cent of the isolates were strains
with more than 66 per cent similarity among their
IS6110 RFLP patterns96. This “Beijing family” of
strains was also detected in high proportions among
strains in other parts of Asia97, the former Russian
Federation98-100  and Estonia Latin America101. Beijing
stains including the W strain and its variants, have
an insertion of IS 6110 in the dnaA-dnaN locus102.
Based on several early technical studies and a review
of 16 studies of the Beijing or W strains that gave
results on spoligotyping, the W family and Beijing
family strains have as identical, characteristic
spoligotype based on DNA polymorphism in
the direct repeat region that contains spacers
35-4391,94,103-106. The true proportion of TB cases
attributable to the Beijing family of strains and an
association between the Beijing family of strains and
drug resistance is hard to assess.

Transmission of drug resistant strain

There is no evidence of a lower risk of infection
among contacts exposed to TB patients with drug
resistant pulmonary TB107.  A population based study
in Mexico reported that MDR-TB were less likely to
be in clusters relative to persons with drug-
susceptible TB107. Similar results were reported by
studies among South African gold miners84 and in
the Netherlands108.  Except in localized areas with
poor cure rates, and a high prevalence of HIV, it is
unlikely that drug resistance strains spread fast.  This
has been shown by mathematical modeling of the
relative transmission of drug resistant versus drug
sensitive strains109. The studies showing reducing
bacterial transmissibility are predominantly for
strains resistant to isoniazid.  Isoniazid is a key
component of the short-course regimen for treatment
of TB.   Studies with animal models showed that
isoniazid resistant strains caused significantly less
disease in guinea pigs than did drug susceptible
strains110-112.   Specific mutations or deletions within
the KatG gene of isoniazid resistant stains of
M. tuberculosis have been associated with decrease
in its pathogenecity113,114.  The most commonly
occurring KatG mutation were [serine 315 replaced
by threonine (S 315T] is associated with clinically
significant levels of isoniazid resistance.
Mycobacterial genome sequence and molecular
epidemiology reveal the phenotypic and genotypic
associations114.

The completed, published genome sequence of
M. tuberculosis provides an enormous amount of
information that will widen research in molecular
epidemiology and mycobacteria genomics115. There are
a number of molecular typing techniques available
which will enable individual stains or clonal groups to
be identified by specific phenotypic traits to study the
genetic basis of these important traits using gene
expression profiling with microarrays.  The strains are
being examined for specific differences in correlation
with bacterial phenotypes such as tissue tropism,
virulence, transmissibility, pathogenesis, antogenecity,
resistance to antimicrobial agents and immunogenecity.
The casual relationships can be established if we
understand the specific polymorphism, deletions or other
changes in the genotypes of the strains.
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Future research should focus on phenotypic
characteristics, gene expression and genotype-
phenotype correlations in M. tuberculosis strains.
Molecular epidemiological methods will continue to
play an important role to identify appropriate public
health interventions and to measure their impact.
However, most of these studies are being conducted
only in industrialized countries and resource-rich
areas that have a relatively low incidence of TB.
Therefore, the inferences drawn and their applications
are limited.  There is a strong need for additional
studies in different geographical areas and
populations with a high burden of disease.  There is
a need for a better understanding of the epidemiology
of tuberculosis; instead of using molecular
epidemiology only as a tool for molecular typing,
we need to find ways to enlist this tool to answer
questions of major public health importance.
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