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In this article an attempt is made to study the appli-
cability of a general purpose, supervised feed forward 
neural network with one hidden layer, namely. Radial 
Basis Function (RBF) neural network. It uses rela-
tively smaller number of locally tuned units and is 
adaptive in nature. RBFs are suitable for pattern recog-
nition and classification. Performance of the RBF neural 
network was also compared with the most commonly used 
multilayer perceptron network model and the classical 
logistic regression. Diabetes database was used for 
empirical comparisons and the results show that RBF 
network performs better than other models. 
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MULTILAYER Perceptron (MLP) network models are the 
popular network architectures used in most of the research 
applications in medicine, engineering, mathematical mod-
elling, etc.1. In MLP, the weighted sum of the inputs and bias 
term are passed to activation level through a transfer 
function to produce the output, and the units are arranged 
in a layered feed-forward topology called Feed Forward 
Neural Network (FFNN). The schematic representation of 
FFNN with n inputs, m hidden units and one output unit 
along with the bias term of the input unit and hidden unit 
is given in Figure 1. An artificial neural network (ANN) 
has three layers: input layer, hidden layer and output layer. 
The hidden layer vastly increases the learning power of 
the MLP. The transfer or activation function of the network 
modifies the input to give a desired output. The transfer 
function is chosen such that the algorithm requires a re-
sponse function with a continuous, single-valued with 
first derivative existence. Choice of the number of the hid-
den layers, hidden nodes and type of activation function 
plays an important role in model constructions2–4. 
 Radial basis function (RBF) neural network is based on 
supervised learning. RBF networks were independently 
proposed by many researchers5–9 and are a popular alter-
native to the MLP. RBF networks are also good at modelling 
nonlinear data and can be trained in one stage rather than 
using an iterative process as in MLP and also learn the given 
application quickly. They are useful in solving problems 

where the input data are corrupted with additive noise. 
The transformation functions used are based on a Gaussian 
distribution. If the error of the network is minimized appropri-
ately, it will produce outputs that sum to unity, which will 
represent a probability for the outputs. The objective of 
this article is to study the applicability of RBF to diabetes 
data and compare the results with MLP and logistic re-
gression. 

RBF network model 

The RBF network has a feed forward structure consisting 
of a single hidden layer of J locally tuned units, which are 
fully interconnected to an output layer of L linear units. All 
hidden units simultaneously receive the n-dimensional real-
valued input vector X (Figure 2). The main difference 
from that of MLP is the absence of hidden-layer weights. 
The hidden-unit outputs are not calculated using the 
weighted-sum mechanism/sigmoid activation; rather each 
hidden-unit output Zj is obtained by closeness of the input 
X to an n-dimensional parameter vector µj associated with 
the jth hidden unit10,11. 
 The response characteristics of the jth hidden unit 
( j = 1, 2, …, J) is assumed as, 
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Figure 1. Feed forward neural network. 
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Figure 2. Radial basis function neural network. 

 
 
 
where K is a strictly positive radially symmetric function 
(kernel) with a unique maximum at its ‘centre’ µj and 
which drops off rapidly to zero away from the centre. The 
parameter σj is the width of the receptive field in the input 
space from unit j. This implies that Zj has an appreciable 
value only when the distance || ||jX µ−  is smaller than the 
width σj. Given an input vector X, the output of the RBF 
network is the L-dimensional activity vector Y, whose lth 
component (l = 1, 2 … L) is given by, 
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For l = 1, mapping of eq. (1) is similar to a polynomial 
threshold gate. However, in the RBF network, a choice  
is made to use radially symmetric kernels as ‘hidden 
units’. 
 RBF networks are best suited for approximating 
continuous or piecewise continuous real-valued mapping 
f : Rn → RL, where n is sufficiently small. These approxi-
mation problems include classification problems as a special 
case. From eqs (1) and (2), the RBF network can be viewed 
as approximating a desired function f (X) by superposition 
of non-orthogonal, bell-shaped basis functions. The degree 
of accuracy of these RBF networks can be controlled by 
three parameters: the number of basis functions used, their 
location and their width10–13. 
 In the present work we have assumed a Gaussian basis 
function for the hidden units given as Zj for j = 1, 2, … J, 
where 
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and µj and σj are mean and the standard deviation respecti-
vely, of the jth unit receptive field and the norm is the 
Euclidean. 

Training of RBF neural networks 

A training set is an m labelled pair {Xi, di} that represents 
associations of a given mapping or samples of a continuous 
multivariate function. The sum of squared error criterion 
function can be considered as an error function E to be 
minimized over the given training set. That is, to develop 
a training method that minimizes E by adaptively updating 
the free parameters of the RBF network. These parameters 
are the receptive field centres µj of the hidden layer 
Gaussian units, the receptive field widths σj, and the out-
put layer weights (wij). Because of the differentiable nature 
of the RBF network transfer characteristics, one of the 
training methods considered here was a fully supervized 
gradient-descent method over E7,9. In particular, µj, σj 
and wij are updated as follows: 
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where ρµ, ρσ, and ρw are small positive constants. This 
method is capable of matching or exceeding the perform-
ance of neural networks with back-propagation algorithm, but 
gives training comparable with those of sigmoidal type of 
FFNN14. 
 The training of the RBF network is radically different 
from the classical training of standard FFNNs. In this 
case, there is no changing of weights with the use of the 
gradient method aimed at function minimization. In RBF 
networks with the chosen type of radial basis function, 
training resolves itself into selecting the centres and dimen-
sions of the functions and calculating the weights of the 
output neuron. The centre, distance scale and precise shape 
of the radial function are parameters of the model, all 
fixed if it is linear. Selection of the centres can be under-
stood as defining the optimal number of basis functions 
and choosing the elements of the training set used in the 
solution. It was done according to the method of forward 
selection15. Heuristic operation on a given defined training 
set starts from an empty subset of the basis functions. 
Then the empty subset is filled with succeeding basis 
functions with their centres marked by the location of 
elements of the training set; which generally decreases 
the sum-squared error or the cost function. In this way, a 
model of the network constructed each time is being 
completed by the best element. Construction of the net-
work is continued till the criterion demonstrating the quality 
of the model is fulfilled. The most commonly used method 
for estimating generalization error is the cross-validation 
error. 
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Formulation of network models for diabetes data 

Data collected from 1200 individuals (600 diabetic, 600 
non-diabetic) attending a private hospital during the period 
1996–98 were used in this work for empirical comparison 
of the network models. The WHO criteria for classifying 
a patient as diabetic namely fasting plasma glucose (FPG) 
greater than 126 mg/dl or 2 h post glucose value greater than 
200 mg/dl was used in selection of diabetic patients16. 
The risk factors considered for analysis are age, gender, 
family history of diabetes, body mass index (BMI), total 
cholesterol level (TC), triglycerides (TG), low density 
lipids (LDL) and high-density lipids (HDL). A dataset of 
600 individuals (400 diabetics and 200 non-diabetics) from 
another specialty hospital during the same period was used 
to validate the model externally. 
 The RBF neural network architecture considered for 
this application was a single hidden layer with Gaussian 
RBF. The basis function φ is a real function of the dis-
tance (radius) r from the origin, and the centre is c. The most 
common choice of φ includes thin-plate spline, Gaussian 
and multiquadric. Gaussian-type RBF was chosen here due 
to its similarity with the Euclidean distance and also since 
it gives better smoothing and interpolation properties17. 
The choice of nonlinear function is not usually a major 
factor in network performance, unless there is an inherent 
special symmetry in the problem. 
 Training of the RBF neural network involved two critical 
processes. First, the centres of each of the J Gaussian  
basis functions were fixed to represent the density function of 
the input space using a dynamic ‘k means clustering algo-
rithm’. This was accomplished by first initializing the set 
of Gaussian centres µj to random values. Then, for any 
arbitrary input vector X(t) in the training set, the closest 
Gaussian centre, µj, is modified as: 
 
 new old ( t ) old( )j j jXµ µ α µ= + − , (7) 
 
where α is a learning rate that decreases over time. This 
phase of RBF network training places the weights of the 
radial basis function units in only those regions of the input 
space where significant data are present. The parameter 
σj is set for each Gaussian unit to equal the average dis-
tance to the two closest neighbouring Gaussian basis 
units. If µ1 and µ2 represent the two closest weight cen-
tres to Gaussian unit j, the intention was to size this para-
meter so that there were no gaps between basis functions 
and only minimal overlap between adjacent basis func-
tions were allowed. After the Gaussian basis centres were 
fixed, the second step of the RBF network training process 
was to determine the weight vector W which would best 
approximate the limited sample data X, thus leading to a 
linear optimization problem that could be solved by ordi-
nary least squares method. This avoids the problem of 
gradient descent methods and local minima characteristic 
of back propagation algorithm18. 

 For MLP network architecture, a single hidden layer 
with sigmoid activation function, which is optimal for the 
dichotomous outcome, is chosen. A back propagation algo-
rithm based on conjugate gradient optimization technique 
was used to model MLP for the above data19–21. 
 A logistic regression model22 was fitted using the same 
input vectors as in the neural networks and diabetic status 
as the binary dependent variable. The efficiency of the 
constructed models was evaluated by comparing the sensi-
tivity, specificity and overall correct predictions for both 
datasets. Logistic regression was performed using logistic 
regression in SPSS package23 and MLP and RBF were 
constructed using Neural Connections Software24. 

Results 

Of the 1200 cases, a random sample of 600 cases (50%) 
was used as training, 300 (25%) for validation, 300 (25%) 
for testing. Training data were used to train the applica-
tion; validation data were used to monitor the neural net-
work performance during training and the test data were 
used to measure the performance of the trained application. 
Of the 1200 cases, two-third were males (62.4%) and 
38.4% had family history of diabetes. Gender composi-
tion and family history of diabetes were similar in both the 
diabetic and non-diabetic groups. The mean of the co-
variates: TC, HDL, TG significantly differs between the 
groups (P < 0.001). The mean of other covariates like 
age, BMI and LDL are similar in both groups. The logistic 
regression fitted to the total cases (n = 1200) gave a sensitivity 
of 74.8%, specificity of 71.8% and overall correct predic-
tion of 73.3%. 
 Of the 300 samples of test data, 110 (36.6%) were dia-
betic cases and the remaining 190 (63.4%) were non-
diabetic cases. Gender composition and family history of 
diabetes were similar in both diabetic and non-diabetic 
groups. The mean of the covariates: TC, LDL, HDL, TG 
significantly differs between the groups (P < 0.001). The 
mean of other covariates like age and BMI is similar in both 
groups. Logistic regression was performed on the test set 
of 300 cases and it showed sensitivity of 75.5%, specificity 
of 72.6% and percentage correct prediction was 73.7%, giving 
almost similar results to that of total cases. The MLP ar-
chitecture had five input variables, one hidden layer with 
four hidden nodes and one output node. Total number of 
weights present in the model was 29. The best MLP was 
obtained at lowest root mean square of 0.2126. Sensitivity 
of the MLP model was 92.1%, specificity was 91.1% and 
percentage correct prediction was 91.3%. RBF neural net-
works performed best at ten centres and maximum num-
ber of centres tried was 18. Root mean square error using 
the best centres was 0.3213. Sensitivity of the RBF neural 
network model was 97.3%, specificity was 96.8% and the 
percentage correct prediction was 97%. Execution time of 
RBF network is lesser than MLP and when compared
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Table 1. Comparative predictions of three models 

Database Model Sensitivity (%) Specificity (%) Correct prediction (%) 
 

Test LOGISTIC 75.5 72.6 73.7 
 MLP (4)* 92.1 91.1 91.3 
 RBFNN (10)** 97.3 96.8 97.0 

External  LOGISTIC 77.8 75.5 77.0 
 MLP (3) 94.5 94.0 94.3 
 RBFNN (8) 98.5 97.0 98.0 

*Number of hidden node in MLP, **Number of centres in RBFNN. 
 

 
with logistic regression, neural networks take slightly higher 
time. 
 The external data of 600 cases (diabetic – 400 and non-
diabetic – 200) were used to test the networks’ learning 
ability of a given problem. Out of these, 38.7% of the external 
data were females and 39.1% of them had a family history 
of diabetes. The gender proportion and family history pro-
portion were similar in both the diabetic and non-diabetic 
groups. The mean of the covariates: TC, LDL, HDL, TG 
significantly differs between the groups (P < 0.0001). The 
mean of other covariates like age and BMI are similar in 
both the groups. Logistic regression performed on the ex-
ternal data gave sensitivity of 77.8%, specificity of 75.5% 
and the overall correct prediction of 77.0%. The MLP archi-
tecture had five input variable, three hidden nodes and 
one output variable. Total number of weights present in 
the model was 22 and the best MLP was obtained at low-
est root mean square of 0.1346. Sensitivity of the MLP 
model was 94.5%, specificity was 94.0% and percentage 
correct prediction was 94.3%. The RBF neural network 
performed best at eight centres and maximum number of 
centres tried was 13. Root mean square error using the 
best centres was 0.1125. Sensitivity of the RBF neural 
network model was 98.5%, specificity was 97.0% and 
percentage correct prediction was 98.0%. The comparative 
results of all the models are presented in Table 1. The re-
sults indicate that the RBF network has a better perform-
ance than other models. 

Conclusion 

The sensitivity and specificity of both neural network 
models had a better predictive power compared to logistic 
regression. Even when compared on an external dataset, 
the neural network models performed better than the logistic 
regression. When comparing, RBF and MLP network 
models, we find that the former outperforms the latter 
model both in test set and an external set. This study indi-
cates the good predictive capabilities of RBF neural net-
work. Also the time taken by RBF is less than that of MLP 
in our application. Though application of RBF network is 
limited in biomedicine, many comparative studies of 
MLP and statistical methods are illustrated using a wide 

range of databases25–32. The limitation of the RBF neural 
network is that it is more sensitive to dimensionality and 
has greater difficulties if the number of units is large. 
 Generally, neural network results presented are mostly 
based only on the same dataset and that there were no results 
presented based on the external/similar independent data-
set33. Here an independent evaluation is done using exter-
nal validation data and both the neural network models 
performed well, with the RBF model having better pre-
diction. The predicting capabilities of RBF neural net-
work had showed good results and more applications 
would bring out the efficiency of this model over other 
models. ANN may be particularly useful when the primary 
goal is classification and is important when interactions 
or complex nonlinearities exists in the dataset. Logistic 
regression remains the clear choice when the primary 
goal of model development is to look for possible causal 
relationships between independent and dependent vari-
ables, and one wishes to easily understand the effect of 
predictor variables on the outcome. 
 There have been ingenious modifications and restric-
tions to the neural network model to broaden its range of 
applications. The bottleneck networks for nonlinear princi-
ple components and networks with duplicated weights to 
mimic autoregressive models are recent examples. When 
classification is the goal, the neural network model will 
often deliver close to the best fit. The present work was 
motivated in this direction. 
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