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Abstract

Background: The variable efficacy (0–80%) of Mycobacterium bovis Bacille Calmette Guréin (BCG) vaccine against adult
tuberculosis (TB) necessitates development of alternative vaccine candidates. Development of recombinant BCG (rBCG)
over-expressing promising immunodominant antigens of M. tuberculosis represents one of the potential approaches for the
development of vaccines against TB.

Methods/Principal Findings: A recombinant strain of BCG - rBCG85C, over expressing the antigen 85C, a secretory immuno-
dominant protein of M. tuberculosis, was evaluated for its protective efficacy in guinea pigs against M. tuberculosis challenge
by aerosol route. Immunization with rBCG85C resulted in a substantial reduction in the lung (1.87 log10, p,0.01) and spleen
(2.36 log10, p,0.001) bacillary load with a commensurate reduction in pathological damage, when compared to the animals
immunized with the parent BCG strain at 10 weeks post-infection. rBCG85C continued to provide superior protection over
BCG even when post-challenge period was prolonged to 16 weeks. The cytokine profile of pulmonary granulomas revealed
that the superior protection imparted by rBCG85C was associated with the reduced levels of pro-inflammatory cytokines -
interleukin (IL)-12, interferon (IFN)-c, tumor necrosis factor (TNF)-a, moderate levels of anti-inflammatory cytokine -
transforming growth factor (TGF)-b along with up-regulation of inducible nitric oxide synthase (iNOS). In addition, the
rBCG85C vaccine induced modulation of the cytokine levels was found to be associated with reduced fibrosis and antigen
load accompanied by the restoration of normal lung architecture.

Conclusions/Significance: These results clearly indicate the superiority of rBCG85C over BCG as a promising prophylactic
vaccine against TB. The enduring protection observed in this study gives enough reason to postulate that if an open-ended
study is carried out with low dose of infection, rBCG85C vaccine in all likelihood would show enhanced survival of guinea pigs.
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Introduction

Mycobacterium tuberculosis continues to be a leading cause of

human deaths due to an infectious agent [1]. The situation has

become even more precarious due to the emergence of multi drug

resistant strains of M. tuberculosis and lethal combination of

tuberculosis (TB) and HIV infections [2,3]. It has been

indisputably accepted by TB experts that complete eradication

of this disease may be difficult to achieve without the availability of

an efficient vaccine. Mycobacterium bovis Bacille Calmette Guréin

(BCG), the only vaccine currently in use against TB, despite its

satisfactory performance against childhood TB, does not impart

adequate protection against pulmonary TB in adults, with its

efficacy ranging from 0–80% [4,5,6].

Development of recombinant BCG (rBCG) based vaccines

over-expressing promising immuno-dominant antigens of M.

tuberculosis represents one of the potential approaches to improve

upon the performance of BCG [7,8,9,10]. The proteins belonging

to the antigen 85 (Ag85) complex, a family of 30–32 kDa proteins

(Ag85A, Ag85B and Ag85C) represent a group of the major

secretory and immunodominant proteins of M. bovis BCG and M.

tuberculosis [11,12] leading to their inclusion in several approaches

for the development of vaccines against TB [13,14,15,16]. Of the

three members of the Ag85 complex, Ag85C (fbpC, Rv0129c), in
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particular, significantly contributes towards the mycolyl transferase

activity of M. tuberculosis and is singularly responsible for almost

40% mycolate content of this pathogen [17,18]. The mycolyl

transferase activity specific to Ag85C cannot be substituted by the

other two members i.e. Ag85A and 85B as shown by the reduction

in the mycolic acid content in the mutant of M. tuberculosis lacking

Ag85C activity [18,19]. In addition to its role in cell wall

biosynthesis, it has also been shown to be highly immuno-

dominant in nature, with several epitopes recognized by CD4 and

CD8 T cells [20,21,22]. In addition, a preferential recognition of

Ag85C over the other two members of the Ag85 complex, by sera

obtained from childhood TB patients especially by the smear and

culture negative patients, further signifies its immunodominant

nature [23]. Moreover, gene encoding Ag85C is known to be up-

regulated in the activated macrophages infected with M.

tuberculosis, perhaps allowing the bacilli to thicken its cell wall in

order to resist the onslaught of the bactericidal mechanisms of the

host [24]. The extra-cellular abundance of Ag85C and its

immunodominant nature makes this antigen an attractive target

for the development of anti-TB vaccines. We have earlier reported

the construction of rBCG strains over-expressing the immuno-

dominant antigens of Ag85 complex under the transcriptional

control of mycobacterial promoters of varying strength [25]. The

immunogenicity of some of these rBCG strains was also studied in

murine model [14,26]. In the present study, the protective efficacy

of rBCG85C was assessed in a highly susceptible guinea pig model

along with the evaluation of immune responses following M.

tuberculosis challenge by the aerosol route. Immunization of guinea

pigs with rBCG85C resulted in a significantly enhanced protection

characterized by a marked reduction in bacillary load in lungs and

spleen along with a significantly reduced pathology in various

organs, when compared to BCG immunization, at least up to 16

weeks post-infection.

Furthermore, in order to gain an insight into the immunological

basis of protection and disease-associated pathology, expression of

cytokines and presence of mycobacterial antigens were measured

in pulmonary granulomatous lesions by immunohistochemistry

(IHC). In addition, semi-quantitative real time PCR (qPCR) for

various cytokines (IL-12, IFN-c, TNF-a and TGF-b) and inducible

nitric oxide synthase (iNOS) was also performed on the total RNA

isolated from lung tissues. Analysis of various immuno-patholog-

ical parameters that influence protective efficacy demonstrated

that rBCG85C vaccine induced modulation of the cytokine levels

was associated with the reduced bacillary and antigen load

accompanied by the restoration of normal lung architecture.

Materials and Methods

Bacteria
M. bovis BCG (Danish strain) was procured from BCG

laboratories, Chennai, India. M. tuberculosis H37Rv was kindly

provided by Dr. J. S. Tyagi, All India institute of medical sciences,

New Delhi, India. BCG, rBCG85C and M. tuberculosis strains were

grown to mid-log phase in Middle Brook (MB) 7H9 media and

stocks were prepared as described earlier [27].

Preparation of antigens for immunization
For preparation of rBCG85C, a Mycobacteria - Escherichia coli shuttle

plasmid pSD5.pro was used as described earlier [25,28]. Briefly, the

plasmid (pSD5.pro) was engineered to over-express Ag85C along

with its native signal sequence under transcriptional control of the

promoter of M. leprae gene encoding heat shock protein 65 (hsp65).

The plasmid was electroporated into M. bovis BCG and selected on

MB7H11 plates containing Kanamycin (25 mg/ml).

Experimental animals
Pathogen free 200–300 g female outbred guinea pigs (Dunkin

Hartley strain) used for the protective efficacy studies were

procured from Disease Free Small Animal House Facility,

Haryana Agricultural University, Hissar, India. The animals were

housed in stainless steel cages and were provided with ad libitum

food and water in a BSLIII facility (National JALMA Institute of

Leprosy and Other Mycobacterial Diseases, Agra, India). All the

experimental protocols were reviewed and approved by the animal

ethics committee of the institute.

Immunization and aerosol challenge of guinea pigs with
M. tuberculosis

For evaluation of protective efficacy, two experiments were

carried out by varying the interval between (i) immunization and

infection and (ii) infection and euthanasia. In each experiment,

guinea pigs (n = 6) were immunized with 56105 CFU of either

BCG (Danish strain) or rBCG85C in 100 ml of saline by intra-

dermal (i.d.) route. In the control group, guinea pigs were injected

with 100 ml of saline (i.d.).

In Exp-I, guinea pigs were challenged 6 weeks post immuni-

zation with ,500 bacilli of virulent M. tuberculosis H37Rv via the

respiratory route in an aerosol chamber (Inhalation exposure

system, Glasscol Inc., IN, USA) and were euthanized 10 weeks

following the infection. In Exp-II, the time interval between

immunization and challenge was extended to 12 weeks and

animals were euthanized 16 weeks post infection.

Measurement of protective efficacy
Animals were monitored regularly for change in body weight

and general body condition as an indicator of disease progression

and were euthanized at specified time points. In addition to the

measurement of bacillary load in lung and spleen, gross and

histopathological changes in various organs and extent of

pulmonary fibrosis were evaluated. A significant reduction in

these parameters in vaccinated animals was considered as a

protective effect of the vaccine.

Necropsy procedure and gross pathological evaluation
Guinea pigs were euthanized by i.p. injection of Thiopentone

sodium (100 mg/kg body weight) (Neon Laboratories Ltd., India).

After aseptically dissecting the animals, lung, liver and spleen were

examined for gross pathological changes and scored using the

Mitchison scoring system [29] with minor modifications (Table

S1), wherein equal emphasis was given to each organ. For

histopathological evaluation, three lung lobes (right caudal, middle

and cranial) and a portion of left dorsal lobe of liver were removed

and fixed in 10% neutral buffered formalin. Left caudal lung lobe

and cranial portion of spleen were aseptically removed for the

measurement of bacillary load. A portion of left cranial lung lobe

and caudal portion of spleen were stored in RNA laterH (Ambion,

TX, USA) at 220uC for isolation of RNA to be used for real time

RT-PCR studies.

Bacterial enumeration
Specific portions of lungs and spleen were weighed and

homogenized separately in 5 ml saline in a Teflon glass

homogenizer. Appropriate dilutions of the homogenates were

inoculated on to MB7H11 agar plates in duplicates and incubated

at 37uC in a CO2 incubator for three to four weeks. The number

of colonies were counted and expressed as log10 CFU/g of tissue.

The detection limit in case of both lung and spleen CFU was 1.0

log10 CFU/g.

rBCG85C Protects against TB
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Histopathological evaluation
Sections of 5 mm thickness from formalin fixed and paraffin

embedded tissues were cut on to glass slides and stained with

haematoxylin and eosin for histo-pathological examination. The

percent granuloma in lung and liver, type and extent of necrosis,

organization of granuloma along with the type of infiltrating cells

were assessed as described earlier [30]. In order to determine the

extent of collagen deposition and fibrosis, the lung sections were

also stained with Van Gieson stain.

Immunohistochemistry
Deparaffinized and re-hydrated lung sections were quenched

for endogenous peroxidase with 3% hydrogen peroxide (in

methanol) followed by antigen retrieval at 90–100uC for 10 min

in citrate buffer (pH-6.5). After blocking the non-specific sites with

2% BSA and 4% goat sera in PBS, sections were probed with

rabbit polyclonal anti-sera against guinea pig IFN-c, TNF-a
(kindly provided by Dr. DN McMurray, The Texas A&M

University System Health Science Center, TX, USA) and Ag85

complex of M. tuberculosis (raised in our laboratory) overnight at

4uC. Following washing with PBST (containing 0.1% Triton-

6100 and 0.5% BSA) and PBS three times, sections were treated

with horseradish peroxidase (HRP) conjugated goat anti-rabbit

antiserum (Jackson laboratories, PA, USA). Finally, the antibody

bound antigenic sites were detected by a colored reaction (brown)

using diaminobenzedine as a chromogenic substrate for HRP and

the slides were counterstained with Mayer’s haematoxylin.

Negative controls were treated with similar procedure except that

primary antibody was replaced with normal rabbit sera.

Image analysis
The tissue sections were examined by light microscopy and the

images were captured by using a CCD camera DS-Fi1-U2 (Nikon

Corp., Tokyo, Japan). The whole section was examined to

determine area and intensity of staining. Immuno-reactivity was

manually scored by estimating the area showing characteristic

staining (A, 1 = ,10%, 2 = 10–25%, 3 = 25–50%, 4 = .50%) and

by estimating the intensity of staining (I, 1 = weak, 2 = moderate,

3 = strong, 4 = very strong). A quick score (Q) was calculated for

each slide by the formula (Q = A6I). The quick score values were

categorized as low (1–2), moderate (3–6) and high (8–16).

RNA extraction and real time RT-PCR
Total RNA was isolated from lung tissues using RNeasy mini

columns and contaminating genomic DNA was removed by on

column treatment with RNase free DNase (Qiagen Inc, CA,

USA). Approximately 3 mg of total RNA from each animal was

reverse transcribed by using random hexamers and Omniscript

RT kit (Qiagen Inc, CA, USA) as per the manufacturer’s

instructions. Primers for guinea pig IFN-c, TNF-a, TGF-b and

IL-12 were designed with Primer Express software (Applied

Biosystems, CA, USA) by using cDNA sequences available in the

public database (http://www. ncbi.nlm.nih.gov) (Table S2).

Primers for iNOS and 18S rRNA were used as described earlier

[31,32]. Real time PCR was performed by using SYBR green

PCR Master Mix (Applied Biosystems, CA, USA) as per the

manufacturer’s instructions.

Statistical analysis
Mean differences for Log10 CFU and % fold induction in

mRNA expression levels as measured by real time PCR were

analyzed by one-way analysis of variance (ANOVA). Least square

difference and Duncan’s post hoc tests were also carried out to

determine the significance of differences between various groups.

The differences between scores allotted for gross pathological

lesions, granuloma percent, quick score (Q) for IHC and extent of

collagen deposition across different groups were analysed by non-

parametric methods. The non-parametric Kruskal-Wallis test was

employed for comparison of multiple groups, followed by the

Mann-Whitney U test for comparison between two groups. The

differences were considered statistically significant when the p

values were less than 0.05. These statistical tests were run on SPSS

software (Version. 10.0, SPSS Inc., Illinois, USA).

Results

rBCG85C vaccination limits bacillary multiplication
To evaluate the efficacy of rBCG85C vaccination, following an

aerosol challenge with M. tuberculosis, bacillary load in the lungs

and spleen of guinea pigs was determined. In experiment (Exp)-I,

guinea pigs were infected with M. tuberculosis 6 weeks post-

immunization and were euthanized at 10 weeks post-infection.

Immunization with both BCG as well as with rBCG85C resulted

in a marked reduction in the lung and spleen bacillary load, when

compared to the saline treatment (Fig. 1A). However, the extent of

reduction in case of rBCG85C immunized guinea pigs was

significantly greater, when compared to BCG immunized animals

(by 1.87 log10 in lung, p,0.01 and by 2.36 log10 in spleen,

p,0.001). In a subsequent study (Exp-II), wherein guinea pigs

were infected 12 weeks post-immunization and euthanized at 16

weeks post-infection, BCG vaccination exhibited a considerable

decline in its ability to impede bacillary multiplication, as was

evident from a comparable bacillary count in BCG and saline

treated animals. However, bacillary load in rBCG85C-immunized

Figure 1. Superior protection by rBCG85C vaccination against
M. tuberculosis challenge. The figure depicts the bacillary load in the
lungs and spleen of immunized and saline treated guinea pigs (n = 6) at
(A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection.
Immunization with rBCG85C resulted in a significantly lower bacillary
load in lung and spleen, when compared to both BCG and saline
groups. Each point represents the Log10 CFU value for an individual
animal and the bar depicts mean (6SE) for each group. The lower limit
of detection was 1.0 log10 CFU/g of tissue and animals with
undetectable bacilli were allotted a CFU value of 1.0 log10/g. Missing
data points represent the animals that succumbed to disease before the
time of euthanasia. *, p,0.05; **, p,0.01 and ***, p,0.001 (One way
ANOVA).
doi:10.1371/journal.pone.0003869.g001
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animals was significantly lower, when compared to BCG

immunized animals (by 0.87 log10 in lung, p,0.05 and by 1.99

log10 in spleen, p,0.05) (Fig. 1B). These observations clearly

indicated enhanced protective efficacy of rBCG85C, when

compared to BCG.

Influence of rBCG85C vaccination on gross pathology
The trend in lung and spleen bacillary load was also

substantiated by the gross pathological changes. At 10 weeks

post-infection (Exp-I), severe pathological damage was observed in

case of saline treated animals characterized by extensive

involvement and numerous large tubercles with scattered areas

of necrosis in both lung and liver (Fig. 2A). In addition, a marked

enlargement of spleen with numerous large and small sized

tubercles with occasional attrition of capsular structure was also

observed in most of the saline treated animals. Guinea pigs

immunized with BCG or rBCG85C showed a significant

reduction in gross pathological damage, when compared to the

saline treated animals. However, lesions were predominantly

scanty and extremely small in the organs of rBCG85C-immunized

animals, when compared to the BCG immunized animals

(p,0.01) (Fig. 2A). At 16 weeks post-infection (Exp-II), 50% of

the saline treated animals succumbed to the disease (3/6); animals

that survived showed characteristic signs of end stage TB with

extensive pathological damage (Fig. 2B). Although, the number of

animals that survived until the time of euthanasia was similar in

both the vaccinated groups (4/6), surviving animals in the BCG

group showed extensive pulmonary damage with several large and

small size tubercles distributed throughout the lung, together with

progressive splenic and hepatic tissue destruction comparable to

that observed in saline treated animals. However, animals

immunized with rBCG85C showed a significantly reduced gross

pathological damage, when compared to saline treated animals

(p,0.05), as was evident from minimal involvement of the lungs

with no evident sign of tissue damage in both liver and spleen

(Fig. 2B).

rBCG85C vaccination reduces granulomatous
inflammation

To evaluate the histopathological changes in the lungs and liver

of immunized and saline treated animals, the tissue sections were

stained with haematoxylin and eosin and granuloma percent was

measured as described in the materials and methods. At 10 weeks

post-infection, the type of lesions observed in the lungs of saline

treated guinea pigs typically represented an advanced stage

granuloma, with extensive coalescence of multiple granulomas

covering 65% area of the lung sections (Fig. 3A). The lung

granulomas in this group were characterized by extensive necrosis

resulting in the loss of lung micro-architecture. The extent of

granulomatous infiltration in BCG vaccinated animals was

comparable to that observed in case of saline treated animals

(Fig. 3A). However, the extent of necrosis in BCG vaccinated

animals was relatively less, when compared to the saline treated

animals. Immunization with rBCG85C resulted in a significant

reduction in the granulomatous infiltration (8%), with the presence

of very few small and discrete granulomas, when compared to the

saline treated animals (p,0.01). The alveolar and bronchiolar

structures in the surrounding areas were well preserved in this

group. On comparing the pathological changes in liver (Fig. 3A),

BCG immunized animals showed a relatively less granulomatous

infiltration (12%), when compared to the saline treated animals

(25%). However, vaccination with rBCG85C prevented hepatic

damage as was evident from only a negligible (0–2%) granuloma-

tous infiltration, when compared to BCG immunized animals

(p,0.01).

At 16 weeks post-infection (Exp-II), the saline treated animals

exhibited extensive granulomatous infiltration with coalescing

necrotic granulomas (75%) effacing the pulmonary parenchyma

Figure 2. Reduction in gross pathological lesions in rBCG85C vaccinated animals following M. tuberculosis infection. The figure depicts
representative photographs of lungs, liver and spleen of vaccinated and saline treated animals (n = 6) euthanized at (A) 10 weeks (Exp-I) and (B) 16
weeks (Exp-II) post-infection. Based on the extent of involvement, number and size of tubercles, areas of inflammation and necrosis, gross
pathological scores were graded from 1–4 (Table S1) and represented graphically. Each point represents score for an individual animal and the bar
depicts median (6inter quartile range) for each group. Missing data points represent the animals that succumbed to disease before the time of
euthanasia. Immunization with rBCG85C resulted in fewer and smaller pulmonary, hepatic and splenic lesions when compared to both BCG and
saline group. *, p,0.05 and **, p,0.01 (Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g002
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(Fig. 3B). Granulomas observed in case of BCG immunized

animals also represented a scenario similar to that observed in the

saline treated animals showing 66% granulomatous infiltration. In

contrast, immunization with rBCG85C preserved the pulmonary

tissue organization with a significant reduction in pathological

damage (16% granuloma, p,0.05) and necrosis. On comparing

the pathological changes in liver (Fig. 3B), saline treated animals

exhibited extensive granulomatous infiltration in the hepatic

lobules, showing multiple coalescing foci of necrotic granulomas

(43%). The reduction in hepatic damage in case of BCG

immunization was variable, with percent granuloma ranging from

15–60%. Immunization with rBCG85C resulted in a significant

reduction in hepatic damage with only a negligible granulomatous

infiltration (3.5%, p,0.05).

Reduction in pulmonary fibrosis with rBCG85C
vaccination

Development of necrosis and eventual fibrosis resulting in

irreversible effacement of lung micro-architecture and respiratory

failure are the primary features of progressive pulmonary TB in

guinea pig model [33,34]. Hence, in addition to the measurement

of percent granuloma, the extent of collagen deposition was also

determined. In case of saline treated animals at 10 weeks post-

infection (Exp-I), extensive areas of collagen deposition in and

around the granulomas were observed (Fig. 4A). Apart from the

presence of collagen surrounding the necrotized core, irregular

thick bands with a large number of foamy macrophages entrapped

within the collagenous layer were also observed. However, a

marked reduction in collagen deposition was observed in case of

BCG immunized animals (p,0.05), wherein, the thin and diffused

bands of collagen were primarily restricted to the periphery of

granulomatous areas (Fig. 4A). Commensurate with the reduced

granulomatous inflammation, lung sections derived from

rBCG85C-immunized animals exhibited the presence of only a

negligible amount of collagen. In Exp-II, paralleling the increase

in granulomatous response observed at 16 weeks post-infection, a

marked increase in collagen deposition was observed in the case of

BCG as well as saline treated animals (Fig. 4B). However,

rBCG85C immunized guinea pigs showed only a negligible

collagen staining, when compared to both the control groups

(p,0.05).

Decline in the antigen load in pulmonary granulomas
following rBCG85C vaccination

To assess the effect of vaccination on clearance of antigen

depots and/or bacillary remnants (a source of inflammation), IHC

staining for M. tuberculosis antigens was carried out. Since, Ag85

complex proteins represent some of the predominant antigens

localized both in the bacterial cell wall as well as in the secretory

fraction, antibodies specific to Ag85 complex proteins were

employed for in situ localization of these antigens as a marker for

the presence of both live mycobacteria and mycobacterial

Figure 3. Histopathological changes in the lungs and liver of rBCG85C vaccinated animals following M. tuberculosis challenge. The
figure depicts representative lower magnification photomicrographs of H&E stained, formalin fixed and paraffin embedded 5 mm sections of lung
and liver of guinea pigs (n = 6) euthanized at (A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection. Saline group is characterized by the
presence of multiple coalescing granulomas with central necrotic core. rBCG85C immunized animals showed reduced granulomatous infiltration with
only a few small and discrete granulomas in comparison to BCG vaccinated animals. Pulmonary and hepatic granuloma percent were measured and
graphically represented by box plot, wherein median values are denoted by horizontal line, the mean is represented by ‘+’, inter quartile range by
boxes, and the maximum and minimum values by whiskers. *, p,0.05 and **, p,0.01 (Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g003
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remnants in the pulmonary granulomas. Immuno-localization

provides advantage over acid fast staining, as the later requires the

presence of intact cell wall of the bacilli, in contrast IHC can detect

bacillary remnants, secreted antigens as well as the live bacilli. A

reduced bacillary load and granulomatous inflammation in the

lungs of rBCG85C-immunized animals suggested a commensurate

clearance of antigenic depots from the pulmonary granulomas. On

comparing the extent of antigen staining, extensive areas of intense

staining within the granulomas were observed in the saline treated

animals at 10 weeks post-infection (Fig. 5A). However, lung

sections derived from animals vaccinated with BCG and

rBCG85C showed a significantly reduced antigen load, when

compared to the saline treated animals (p,0.05). On extending the

time of euthanasia to 16 weeks, animals immunized with

rBCG85C showed a significant reduction in antigen load in

comparison to BCG immunized animals (p,0.05), with the latter

exhibiting a staining pattern comparable to that observed in saline

treated animals (Fig. 5B).

Immuno-localization of IFN-c and TNF-a in pulmonary
granulomas

Immuno-histochemical staining of the lung tissues showed the

presence of IFN-c and TNF-a in all the groups and was marked by

their abundance in the granulomatous lesions compared to that in

the non-granulomatous areas. However, the extent of staining

varied among the groups. In Exp-I, based on the area and

intensity of staining, the extent of IFN-c expression in granulo-

matous regions indicated a comparable presence of this cytokine in

the lungs of BCG and rBCG85C immunized animals at 10 weeks

post-infection (Fig. 6A). Majority of the saline treated animals

showed relatively very low levels of this cytokine localized

primarily in the areas infiltrated with macrophages. Lung sections

from BCG immunized animals showed moderate levels of IFN-c
staining in the areas infiltrated by both macrophages and

lymphocytes. A similar pattern of IFN-c staining was also observed

in case of rBCG85C-immunized animals (Fig. 6A). At this time

point, a very high level of TNF-a was observed in case of saline

treated animals (Fig. 7A). TNF-a was localized extensively in the

necrotic areas as well as in the macrophages and extra cellular

spaces within the advanced coalescent granulomas. Immunization

with BCG resulted in the reduced amounts of TNF-a expression

primarily localized inside the macrophages and in non-necrotic

granulomatous areas. In contrast, rBCG85C-vaccinated animals

showed only a negligible staining for TNF-a with its presence

restricted primarily to the granuloma core (Fig. 7A). On extending

the time of euthanasia to 16 weeks in Exp-II, an overall reduced

IFN-c levels were observed in all the groups with no significant

differences (Fig. 6B). As observed at 10 weeks, at this time point

also, the levels of TNF-a were found to be significantly lower in

case of both the vaccinated groups, when compared to the saline

treated animals (p,0.05) (Fig. 7B)

Modulation of host gene expression in the lungs by
rBCG85C vaccination

Profiling of various cytokines and iNOS by real time RT-PCR

using gene specific primers (Table S2) and RNA isolated from the

lungs of vaccinated and non-vaccinated guinea pigs revealed a

distinct pattern of IFN-c, TNF-a, TGF-b, IL-12 and iNOS

expression at both 10 weeks and 16 weeks post M. tuberculosis

infection. The data for real time PCR is graphically shown in Fig. 8

as % fold induction in the levels of different cytokines and iNOS

relative to the induction in the uninfected (and non-vaccinated)

animals. The relative proportion of IFN-c and TNF-a in the

transcript pool obtained from the whole lung homogenate was

found to be in striking contrast to the results obtained from

immuno-localization of these cytokines by IHC. At 10 weeks post-

infection (Exp-I), both vaccinated and saline treated guinea pigs

showed a comparable fold induction of these cytokines at mRNA

level (Fig. 8A). However, at 16 weeks post-infection (Exp-II), a

significant up-regulation of both the inflammatory cytokines (IFN-

c and TNF-a) was observed in BCG immunized guinea pigs

(Fig. 8B), when compared to the saline treated animals (p,0.001).

In case of rBCG85C-immunized animals, a significant reduction

in the bacillary load and pathological damage was accompanied

by a marked reduction in the inflammatory responses as was

evident from the reduced transcript levels of these cytokines, when

Figure 4. Influence of rBCG85C vaccination on pulmonary fibrosis. The representative photomicrographs of Van Gieson stained 5 mm lung
sections of guinea pigs (n = 4) euthanized at (A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection, depict significantly less collagen deposition
(red color) in association with reduced granulomatous inflammation in rBCG85C immunized animals, when compared to BCG vaccinated group.
Saline group is characterized by extensive fibrosis of granulomatous regions. Scale bar represents 1000 mm. Extent (Q) of pulmonary fibrosis was
measured [Q = Intensity (I)6area (A) of staining] and represented graphically as median (6inter quartile range). *, p,0.05 (Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g004
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compared to BCG immunized animals (p,0.001). Although,

rBCG85C immunized animals showed marginally higher levels of

TNF-a in comparison to the saline treated animals, the IFN-c
levels in both the groups remained comparable (Fig. 8B).

Surprisingly, in the saline group, despite a very high bacillary

load and extensive pulmonary tissue damage, very low levels of

IFN-c and TNF-a were observed at both the time points, which

was in striking contrast to relatively very high levels of TNF-a
staining observed in pulmonary granulomas in this group by IHC.

In addition to these two major cytokines (IFN-c and TNF-a)

that have been implicated in TB associated pathology, the

combinatorial effect of IL-12p40 (pro-inflammatory) and TGF-b.

(anti-inflammatory) on granuloma formation, tissue remodeling

and disease resolution was also studied by measuring the

Figure 5. Reduced M. tuberculosis antigen load in pulmonary granulomas of rBCG85C vaccinated animals. The representative
photomicrographs of 5 mm lung sections show immuno-histochemical staining (brown color) for Ag85 complex proteins in pulmonary granulomas at
(A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection. Immunization with rBCG85C in conjunction with reduced granulomatous inflammation
showed a significantly lower antigen load at both 10 and 16 weeks post-infection, when compared to saline treated animals, which showed extensive
staining surrounding and within the necrotic areas. BCG vaccination showed a significant reduction in antigen load at 10 weeks post-infection. At 16
weeks post-infection, extensive staining was observed in BCG immunized animals similar to that in case of saline-treated animals. Scale bar represents
1000 mm. Extent (Q) of staining was measured [Q = intensity (I)6area (A) of staining] and represented graphically as median (6inter quartile range). *,
p,0.05 (Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g005

Figure 6. Immuno-localization of IFN-c in pulmonary granulomas. The representative photomicrographs of 5 mm lung sections show
immuno-histochemical staining (brown color) for IFN-c in pulmonary granulomas at (A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection. IFN-c
staining in both the vaccinated groups was found to be relatively higher at 10 weeks post-infection in comparison to the saline treated group.
However, at 16 weeks post-infection, a comparable staining was observed in both the vaccinated and saline treated animals. Scale bar represents
200 mm. Extent (Q) of staining was measured [Q = Intensity (I)6area (A) of staining] and represented graphically as median (6inter quartile range).
(Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g006
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Figure 7. Immuno-localization of TNF-a in pulmonary granulomas. The representative photomicrographs of 5 mm lung sections show
immuno-histochemical staining (brown color) for TNF-a in pulmonary granulomas at (A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection.
Immunization with rBCG85C in conjunction with reduced granulomatous inflammation showed a significantly reduced staining for TNF-a at both 10
and 16 weeks post-infection, when compared to saline treated animals, which showed extensive staining surrounding and within the necrotic areas.
The extent of staining in BCG group was relatively higher at 10 weeks in comparison to rBCG85C, however, at 16 weeks a comparable staining was
observed. Scale bar represents 200 mm. Extent (Q) of staining was measured [Q = intensity (I)6area (A) of staining] and represented graphically as
median (6inter quartile range). *, p,0.05 (Mann-Whitney U test).
doi:10.1371/journal.pone.0003869.g007

Figure 8. Modulation of host gene expression in the lung by rBCG85C vaccination. Expression of various cytokines and iNOS was
measured in the lung tissues of vaccinated and saline treated guinea pigs (n = 3) at (A) 10 weeks (Exp-I) and (B) 16 weeks (Exp-II) post-infection by
semi-quantitative real time RT-PCR using gene specific primers (Table S2). The data were normalized to 18S rRNA levels and then normalized to the
values of uninfected animals to obtain DDCt values. The % fold induction values were measured (2 2DDCt6100) and are graphically represented as
mean (6SE). Immunization with rBCG85C resulted in relatively lower levels of pro-inflammatory cytokines IL-12, IFN-c and TNF-a and moderate level
of anti-inflammatory cytokine TGF-b with a significant up-regulation of iNOS expression, when compared to both BCG immunized and saline treated
animals. *, p,0.05; **, p,0.01 and ***, p,0.001 (One way ANOVA).
doi:10.1371/journal.pone.0003869.g008
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expression levels of these cytokines. At 10 weeks following M.

tuberculosis infection, BCG immunized guinea pigs showed

relatively higher levels of IL-12p40, when compared to saline

treated animals (Fig. 8A). Immunization with rBCG85C resulted

in only a marginal augmentation in the expression levels of IL-

12p40 over saline treatment. With progression of disease to 16

weeks (Fig. 8B), a marked shift in the expression profile of this

cytokine was observed, wherein, rBCG85C immunized animals

showed a considerable reduction in the levels of IL-12p40, when

compared to saline treated animals (p,0.001). However, there was

a significant up-regulation of this cytokine in BCG immunized

guinea pigs, when compared to the saline group (p,0.001).

On comparing the expression levels of TGF-b, at 10 weeks post-

infection (Fig. 8A), no considerable differences were observed in

the vaccinated and saline treated animals. However, at 16 weeks

post-infection (Fig. 8B), both BCG and rBCG85C immunized

animals showed increased levels of TGF-b, when compared to the

saline treated animals. The extent of up-regulation of TGF-b in

BCG group was significantly higher in comparison to rBCG85C-

immunized animals (p,0.01).

Production of highly reactive nitric oxide intermediates (RNI)

represents one of the key mycobactericidal mechanisms employed

by the activated macrophages and iNOS is the principal enzyme

involved in the generation of RNI by phagocytes [35,36]. Hence,

in addition to studying the effect of vaccination on induction of

various cytokines, expression of iNOS was also measured. On

comparing the transcription profile of iNOS in lungs obtained

from various vaccination groups, at 10 weeks post-infection,

despite the significant differences in bacillary load and pathological

damage, no significant differences in the levels of iNOS were

observed between the vaccinated and non-vaccinated animals

(Fig. 8A). However, at 16 weeks, distinct differences in the levels of

iNOS expression were observed among various groups (Fig. 8B).

Immunization with both BCG and rBCG85C resulted in a

marked elevation in iNOS levels in comparison to the saline

treatment (p,0.001). However, the extent of up-regulation was

significantly higher in rBCG85C group in comparison to BCG

immunized animals (p,0.001), which corroborate well with the

differences in the bacillary load observed among these groups at

this time point.

Discussion

This study demonstrates a significant enhancement in the

protective efficacy of BCG by over expression of Ag85C- an

immuno-dominant antigen of M. tuberculosis and correlation of this

superior protection with the immuno-pathological events attribut-

able to modulation of the cytokine profile of pulmonary

granulomas. The parameters used for the evaluation of protective

efficacy following an aerosol challenge with M. tuberculosis were, (i)

bacillary load in lung and spleen and (ii) pathological changes in

lung, liver and spleen. The challenge dose employed in this study

resulted in an early manifestation of severe disease symptoms and

thus allowed discrimination between the protective efficacies of

rBCG and parent BCG vaccines within a reasonable time frame.

At 10 weeks post-infection, vaccination with rBCG85C resulted in

a significantly reduced bacillary load in the lungs (,87 folds) along

with a marked reduction in hematogenous spread to the spleen

(,360 folds) in comparison to vaccination with the parental BCG

strain. This reduced bacillary load was also accompanied by a

marked reduction in the pulmonary, splenic and hepatic

pathology. On extending the interval between vaccination and

challenge (to 12 weeks) and between challenge and euthanasia (to

16 weeks), rBCG85C continued to impart a relatively superior

protection with a remarkably greater control on bacillary

multiplication in the lungs (,9 folds) and a successful restriction

of the hematogenous spread of tubercle bacilli to spleen (,100

folds) in comparison to immunization with the parent BCG strain.

The importance of these variables was clearly emphasized in a

comprehensive study carried out by EU TB Vaccine Cluster,

wherein, the superiority of many candidate vaccines over BCG

was demonstrated by employing a high dose of challenge with an

extended post challenge evaluation period [37].

Being a localized infection, the control of pulmonary TB largely

depends on the orchestration of various cellular components of the

immune system and a coordinated interplay of various pro- and

anti-inflammatory cytokines at the foci of infection [38,39].

Several studies have suggested that often it requires more than a

single cytokine to influence the cell mediated tissue damage in

response to microbial infection and a fine-tuning of multiple

cytokines is de rigueur for an effective clearance of the pathogen

[39,40]. In the absence of vaccination, the clinical manifestation of

progressive end-stage TB in guinea pigs is known to be associated

with a strong inflammatory response to the persistent antigens or

bacilli leading to extensive necrosis and progressive fibrosis [33].

However, an efficient vaccine is expected to prime the immune

system to generate an efficiently regulated and targeted response

for an effective microbial and antigenic clearance, minimizing the

collateral damage to the host. Immuno-localization of Ag85

complex proteins–some of the most abundant proteins of M.

tuberculosis, as a marker of the mycobacterial antigen load, showed

elevated levels of these antigens in the granulomas as observed in

case of saline treated animals. This increased antigen load was

found to be associated with the production of superfluous amount

of TNF-a, unwarranted inflammation, tissue destruction and

excessive collagen deposition. However, in addition to the

bacillary clearance, rBCG85C mediated immune responses

resulted in reduced antigen load indicating an effective removal

of mycobacterial antigens and/or the bacillary remnants. A

corresponding reduction in the extent of granulomatous inflam-

mation and fibrosis in this group further substantiated the fact that

an effective removal of the residual antigenic depots from the sites

of infection is essential for the resolution of granulomatous lesions.

More over, reduction in the levels of IFN-c and TNF-a, towards

the later stage of disease in case of the rBCG85C-immunized

animals, further signifies the fact that, although, induction of these

cytokines following M. tuberculosis infection is known to be essential

for the initial containment of the bacilli [39,41], a subsequent

reduction in the levels of these cytokines is crucial for the

resolution of granulomatous lesions, as observed in this study.

However, an apparent lack of concordance in the levels of these

cytokines (as measured by IHC) with the antigen load and

granulomatous inflammation in the lungs of BCG immunized

animals suggests involvement of additional cytokines and cellular

components in the pulmonary inflammation and tissue damage

not measured in this study.

Comparison of mRNA expression profile for various cytokines

showed that at 10 weeks post-infection, no specific pattern was

evident for any vaccine regimen. However, at 16 weeks a

characteristic cytokine profile was found to be associated with

the history of vaccination. BCG immunization caused up-

regulation of both the pro-inflammatory cytokines (IL-12, IFN-c
and TNF-a) as well as anti-inflammatory cytokine (TGF-b). These

counter-acting mechanisms could neither reduce the exaggerated

granulomatous response, nor control excessive bacillary multipli-

cation. In contrast, rBCG85C immunization resulted in signifi-

cantly lowered levels of IL-12, IFN-c and TNF-a and a marginal

decline in the levels of TGF-b in comparison to BCG vaccination.
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The reduction in the levels of the pro-inflammatory cytokines has

been reported to be essential for the resolution of granulomatous

inflammation and thus crucial for alleviation of disease symptoms

(reviewed in [42]). Besides, the up-regulation of iNOS in case of

rBCG85C vaccination towards the later stage of the disease,

possibly resulted in an efficient killing of the bacilli, in comparison

to the BCG vaccinated animals. Such mycobactericidal effect of

iNOS although has been reported in several in vitro and in vivo

studies [36,43,44], its influence in the context of vaccine response

in guinea pig model for such a prolonged period has been

investigated for the first time in this study.

In all TB vaccine related studies, BCG has been used as the gold

standard to pronounce the worthiness of a new vaccine candidate,

because it is the failure of BCG in the adult human population that

has necessitated the development of a new TB vaccine in the first

place. However, this convention suffers from a caveat–a new

vaccine is required for protection in humans, wherein, BCG does

not work well; on the other hand, a new vaccine cannot progress to

human trials without proving its superiority to BCG in animal

models in which BCG works rather efficiently. Hence, it has been

difficult to develop vaccines, which would ensure a superior

protection over BCG in animal models. It is thus not surprising

that in spite of a large number of vaccine related studies, merely 9

vaccine regimens have progressed to various stages of human

clinical trials (reviewed in [45]). These vaccines have shown a

better or equal performance in comparison to BCG in their ability

(i) to reduce the bacillary load in lung and spleen and/or (ii) to

reduce pathological damage and/or (iii) to perform better in time

to death assay. While survival assay represents the most

dependable tool to evaluate the protective efficacy of TB vaccines

in animal models, due to infrastructure and time constraints

involved in these long drawn studies, it has been customary to first

evaluate TB vaccines in time-bound studies and then channelize

the promising ones through survival assays [37,46]. We have not

yet carried out the survival assays with the rBCG85C vaccine

however, the 16 weeks assay carried out to evaluate its protective

efficacy in a highly relevant guinea pig model of TB shows that at

least on the basis of such evaluations and their comparison with all

the vaccines that have already progressed to clinical trials,

rBCG85C imparts a remarkable protection. The enduring

protection observed in this study gives enough reasons to postulate

that if an open-ended study is carried out, rBCG85C vaccine in all

likelihood would show enhanced survival of guinea pigs.

Furthermore, we have attempted to provide an insight into the

association between the protective efficacy imparted by an efficient

vaccine and the cytokine milieu in the pulmonary granuloma in

guinea pigs for such a prolonged post-challenge period. Such a

comprehensive evaluation of the temporal and spatial variations in

immune components, if carried out along with the long-term

survival assays, may help in removing the existing paradox

associated with the role of various cellular components and

cytokines in mediating protection against M. tuberculosis infection.

Our future efforts would focus on these aspects.

Supporting Information

Table S1 Post-mortem gross pathological scoring system. The

table illustrates the gross pathological scoring system used for

visual scoring of lesions in lung, liver and spleen of guinea pigs

infected with M. tuberculosis. Mitchison’s virulence scoring system

was modified and equal emphasis was given to every organ and

scores were graded as 1–4.

Found at: doi:10.1371/journal.pone.0003869.s001 (0.04 MB

DOC)

Table S2 Primer sequences used for real time PCR.

Found at: doi:10.1371/journal.pone.0003869.s002 (0.03 MB

DOC)
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