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non-nucleoside reverse
transcriptase inhibitors during
concurrent rifampicin-containing
tuberculosis therapy: one size
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Avenue, Providence, Rhode Island 02906, USA

Importance of the field: HIV/tuberculosis (TB) co-infection is common and

associated with high mortality. Simultaneous highly active antiretroviral

therapy during TB treatment is associated with substantial survival benefit

but drug–drug interactions complicate NNRTI dosing.

Areas covered in this review: We reviewed the impact of rifampicin-contain-

ing TB therapy on the NNRTIs pharmacokinetics and clinical outcome. PubMed

database was searched from 1966 to July 2009 using the terms efavirenz,

rifampicin, nevirapine, pharmacokinetics, pharmacogenetics, HIV, TB, CYP2B6,

CYP3A4 and metabolism. References from identified articles and abstracts

from meetings were also reviewed.

What the reader will gain: A comprehensive review of the literature on this

subject including pharmacokinetic and clinical studies. Most studies were

small, observational or underpowered to detect the true effect of rifampicin

on NNRTI-based therapy. None of the studies were controlled for genetic

factors and there were limited data on children.

Take home message: There were insufficient data to make definitive recom-

mendations about dose adjustment of the NNRTIs during rifampin-containing

therapy. Current data suggest that the standard dose of efavirenz or nevira-

pine is adequate in most HIV/TB co-infected adults. However, more research is

needed in pediatric populations as well as to define role of drug–gene

interactions.

Keywords: drug interactions, efavirenz, HIV, nevirapine, rifampicin, tuberculosis
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1. Introduction

Tuberculosis (TB) remains a major cause of morbidity and mortality in people with
HIV infection. Of the estimated 9.27 million incident TB cases in 2007, an
estimated 1.37 million (15%) were HIV-infected [1] During the period, 456,000
deaths occurred among those who were HIV-infected with TB, which represented
33% of the HIV-positive cases of TB and 23% of the estimated 1.8 million TB
deaths in 2007 [1]. Several observational studies have found that simultaneous highly
active antiretroviral therapy (HAART) during TB treatment is associated with
substantial reduction in mortality [2-4]. However, challenges to simultaneous therapy
including high pill burden, overlapping drug toxicities, drug–drug interactions and
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concerns about immune reconstitution inflammatory syn-
drome have often been cited as reasons to delay or defer
HAART during TB treatment [5,6].
Antiretroviral therapy (ART) programs have been rapidly

scaled up in resource-limited countries and WHO estimates
that 4 million people were on treatment at the end of 2007
(UNAIDS). TB is the most commonly associated infection
and is often the entry point for a significant proportion of
HIV-infected patients into care and treatment [7]. While TB
can occur at any stage of HIV disease, the incidence increases
as immunodeficiency advances. Thus, a significant proportion
of HIV-infected patients eligible for HAART also require
concomitant TB requiring treatment [8]. Although early ini-
tiation of HAART is associated with reduced mortality in
patients with concurrent HIV/TB co-infection [9], immune
reconstitution due to HAART does not eliminate the higher
risk of developing TB in HIV-infected individuals compared
to the general population [10]. Thus, it is evident that the
treatment of HIV/TB co-infected patients is a major challenge
facing many programs, especially those with a limited
repertoire of antiretroviral drugs.
Rifampicin, a key component of short-course chemother-

apy for TB, is a potent inducer of the CYP enzyme system
that metabolizes several drugs including non-nucleoside
reverse transcriptase inhibitor (NNRTI) antiretroviral agents.
The interactions between rifampicin and the antiretroviral
drugs can be complex and occur at different sites including the
intestine and the liver (Figure 1). Prototypical inducers such as
rifampicin increases the expression of CYP3A4 and CYP2B6

by interacting with the nuclear receptors, pregnane X rec-
eptor (PXR) or constitutive androstane receptor (CAR),
which forms a heterodimer with the retinoid X receptor.
The heterodimer then binds to the regulatory region of
CYP3A4 or CYP2B6 resulting in upregulation of enzyme
synthesis and increased metabolic activity [11,12]. The nuclear
receptors PXR and CAR have been linked to the function
and activity of drug transporters in the liver, intestines and
kidney and play a vital role in drug absorption, distribution
and excretion [11,12]. The HIV protease inhibitors and the
NNTRIs are themselves potent inhibitors and/or inducers of
CYP enzymes, which may complicate prediction of the net
effect of drug–drug interactions. The NNRTIs are recom-
mended as components of initial combination HAART regi-
mens in the public health approach recommended by the
WHO [13]. Among the NNRTIs, nevirapine is widely used in
resource-constrained countries because of its availability as
generic fixed-drug combination tablets and lower cost. Unlike
efavirenz, the preferred NNRTI in the setting of TB treat-
ment, nevirapine, is suitable for women of child bearing
potential, because it is not a known teratogen. In many
countries, it is the only available NNRTI.

There are currently > 20 approved antiretroviral drugs in
six different classes from which combination HAART regi-
mens can be constructed. However, in sub-Saharan Africa or
Asia where > 90% of the HIV/TB co-infected patients in the
world live, treatment options are severely limited. The recom-
mended first-line HAART regimen in resource-limited set-
tings is either efavirenz or nevirapine with two nucleoside/
nucleotide reverse transcriptase inhibitors, though in the
setting of concurrent TB therapy, efavirenz is preferred [13].
The implications of potential pharmacokinetic drug–drug
interactions between rifampin and the NNRTIs, efavirenz and
nevirapine are not well understood. Consequently, there is no
consensus about the appropriate doses of efavirenz or nevirapine
when used in the setting of rifampicin-containing TB treatment.
Further, pharmacokinetic variability can be due to differences in
drug absorption, distribution, metabolism, protein binding and
drug–drug interactions. Increased hepatic clearance found in
patients of caucasian origin versus African, Asian or Hispanic
patients, and reports of differences in treatment response and
adverse effects among various ethnic groups suggest that genetic
polymorphisms which alter the expression of drug membrane
transporter proteins or metabolizing enzymes could influence
drug pharmacokinetics.

We performed a literature search to find published articles
that evaluated drug–drug interactions between rifampicin
or rifampicin-containing TB treatment and the NNRTIs
or NNRTI-based HAART. A PubMed database was
searched from 1966 to July 2009 using the terms efavirenz,
rifampicin, nevirapine, pharmacokinetics, pharmacogenetics,
HIV, TB, CYP2B6, CYP3A4 and metabolism. References
from identified articles were also reviewed and abstracts from
recent meetings were included. Studies were included if
they evaluated the influence of rifampicin-containing therapy

Article highlights.

. Concurrent antiretroviral therapy during TB treatment is
associated with substantial survival benefit but the
appropriate dose of the NNRTI components is unresolved.

. Rifampin induces the metabolism of efavirenz resulting in
decreased plasma concentrations but the influence of
rifampicin appears to be highly variable from one
individual to another.

. CYP2B6 516G>T genotype is strongly associated with
efavirenz disposition irrespective of rifampicin-containing
therapy.

. Most pharmacokinetic and clinical studies that evaluated
the interactions between efavirenz and rifampicin-
containing TB therapy are small and inconclusive and do
not take into account the highly inter-individual variability
in the rifampin effect.

. A marked decrease in nevirapine concentrations during
co-administration with rifampicin is consistently observed
in most pharmacokinetics studies but the clinical
significance is unclear.

. The drug–drug interactions between nevirapine and
rifampicin may also be confounded by host genetics.

. There are very limited data on the interactions between
the NNRTIs and rifampicin containing TB therapy in
pediatric populations.

This box summarises key points contained in the article.
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on pharmacokinetics or clinical effects of efavirenz or nevi-
rapine. Studies were also included if they evaluated the
pharmacogenetics of efavirenz or nevirapine metabolism in
the presence or absence of concurrent TB therapy. The pri-
mary objective of this review is to address the influence of
drug–drug interactions as well as biological or genetic factors
on the pharmacokinetics and treatment responses to efavirenz
and nevirapine-based HAART in the setting of rifampicin-
containing TB treatment. Our opinions on the factors that
should be considered in deciding appropriate dose adjust-
ment of the NNRTIs and the direction of future research
are discussed.

2. Efavirenz

Efavirenz is an NNRTI and is a key component of one of the
preferred regimens in the initial treatment of HIV infection.
It is also available in generic form in developing countries,
making efavirenz-based therapy a major option for HIV-
infected person requiring HAART in resource poor settings.
The standard dose is 600 mg daily and often taken at night to
reduce the effects of CNS side effects. Efavirenz was approved
by the FDA for HIV treatment in 1998 and in July 2006 a
fixed-dose combination tablet containing efavirenz 600 mg,
tenofovir 300 mg and emtricitabine 200 mg was approved by
the FDA under the brand name Atripla�.

2.1 Metabolism
Efavirenz is metabolized primarily by hydroxylation through
hepatic CYP2B6, with minor contributions from CYP3A4/5
and CYP2A6 to form inactive metabolites 8-hydroxy efavirenz
and 7-hydroxy efavirenz [14,15]. The main metabolite,
8-hydroxy efavirenz is further hydroxylated primarily by

CYP2B6 to form 8,14-hydroxy efavirenz. The oxidative met-
abolites undergo conjugation by UDP-glucuronyltransferase
(UGT) pathway and are excreted in the urine as glucuro-
nides [15]. Efavirenz also undergoes direct conjugation by
UGT to form N-glucuronide, but until recently the enzyme
isoform was unknown [15,16]. UGT2B7 has recently been
implicated in the direct glucuronidation of efavirenz [17].
The 8-hydroxylation pathway represents the major route of
metabolism of efavirenz accounting for > 90% of efavirenz
oxidation [15], and alternate pathways such as 7–hydroxylation
and N-glucuronidation may be important in individuals with
loss-of-function of CYP2B6 [18].

2.2 Influence of TB therapy on efavirenz
pharmacokinetics
Rifampicin induces the function and activity of CYP2B6, the
main metabolic enzyme for efavirenz. In primary human
hepatocytes, the increase in CYP2B6 activity due to rifampicin
varies widely from 2.5- to 13-fold [19-21]. However, in vivo,
co-administration of efavirenz with rifampicin led to only a
modest (22 – 26%) reduction in efavirenz plasma expo-
sure [22,23]. In one of these pharmacokinetic studies, the change
in efavirenz exposure with concomitant rifampicin ranged
from a decrease of 65% to an increase of 37% [23], suggesting
inter-individual differences in the inducibility of the drug
metabolizing enzymes. Another example of wide inter-
individual variability in rifampin effect is illustrated in
Figure 2, in which healthy volunteers treated with efavirenz
in the presence or absence of rifampicin showed a change in
efavirenz exposure that ranged from a decrease of 100% to an
increase of -56% during rifampicin coadministration (unpub-
lished data). The variability in efavirenz concentrations was
found to be greater in the presence of rifampicin than without
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Figure 1. Disposition of CYP substrates such the PIs or the NNRTIs and potential influence of induction or inhibition of
enzymes or transporters on systemic drug exposure.
*Rifampin is a potent inducer and the NNRTIs and PIs are themselves inducers and/or inhibitors of CYP enzymes or P-glycoprotein transporter. Modulation of these

systems may cause altered metabolism and drug concentrations when inducers and/or inhibitors are used concurrently with enzyme substrates.

NNRTI: Non-nucleoside reverse transcriptase inhibitor; PI: Protease inhibitor.
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Figure 2. Efavirenz concentration-time profile in three healthy volunteers in the absence (close circles) and presence of
rifampin (open circles). The effect of rifampin co-administration varied from a reduction in efavirenz AUC by100% (A) to an intermediate
of a reduction by 42% (B) to an increase by 56% (C).
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rifampicin [24,25], which is probably a manifestation of inherent
differences in the inducibility of CYP2B6 variants. The possible
inter-individual differences in enzyme induction on the clear-
ance of efavirenz when co-administered with rifampicin further
complicate decisions about dose adjustments of efavirenz in the
setting of concurrent rifampin-containing TB therapy.

2.3 Clinical studies of concurrent efavirenz and
rifampicin-containing therapy
The concern about the drug–drug interactions between rifam-
picin and efavirenz is that reduction in efavirenz concentra-
tions due to induction of metabolism by rifampin could lead
to HIV treatment failure and development of drug resistance.
Concurrent HIV and TB therapy is necessary as it is associated
with reduced mortality but clinicians are often faced with the
challenges of managing the drug–drug interactions when
multiple drugs are used in a regimen. The 22 – 26% reduction
in mean efavirenz plasma exposure due to induction effect
of rifampicin on efavirenz clearance has led some experts to
recommend an increased efavirenz dose to 800 mg/day when
co-administered with rifampin [26-28]. The fixed daily dose of
600 mg for adults is known to be associated with significant
inter-individual variability in plasma concentrations as well as
some clinical effects [29-31]. Mid-dose or trough efavirenz
plasma concentrations below 1000 ng/ml has been associated
with increased risk of virologic failure in HIV-infected
patients not receiving concurrent rifampicin-containing ther-
apy [30-32], while concentrations above 4000 ng/ml have been
associated with risk of CNS side effects [30,31].

Thus, the goal of efavirenz dose adjustment when
co-administered with rifampicin is to avoid sub-therapeutic
concentrations. However, it must be balanced with the need
to avoid supra-therapeutic efavirenz plasma concentrations
in individuals who are genetically predisposed to impaired
enzyme activity. Recent studies have shown that individuals
with CYP2B6 516 TT genotypes are at risk of high efavirenz
plasma exposures even in the presence of rifampicin-contain-
ing therapy [33,34]. Thus, increase in efavirenz dose during
rifampin-containing therapy may not be necessary in indivi-
duals with a slow metabolizing phenotype. Clinically, efavir-
enz 800 mg/day has been used in some patients with TB/HIV
co-infection on rifampicin-containing therapy but the
increased dose has not been shown to result in superior
virologic suppression rates [35-37]. Rather, the increased dose
was associated with a high frequency of CNS and hepatic
toxicities associated with high efavirenz plasma concentrations
in one study that predominantly enrolled native Africans [35].
In contrast, another study in which 50% of the participants
were Caucasian did not report a higher frequency of supra-
therapeutic concentrations and/or increased toxicity in indi-
viduals treated with efavirenz 800 mg daily [25]. There are case
reports of the need for higher efavirenz doses up to 1600 mg
daily to achieve desired plasma concentrations, as well as
virologic suppression in two patients with no identifiable
slow-metabolizing phenotype mutation who were also treated

rifampin [38]. However, in most published studies, efavirenz
600 mg/day appears to be adequate in the setting of TB
therapy in most patients [24,37,39]. In addition, the only
randomized study of efavirenz 600 or 800 mg daily was
conducted in Thai patients and found no difference in
virological outcome between the two groups [37]. However,
this study was limited by the small size of the study popu-
lation, which could have missed a small but clinically mean-
ingful effect of the increased dose. Overall, a review of
available literature of clinical studies that used efavirenz
600 or 800 mg daily in HIV/TB co-infected patients under-
taken by the FDA did not find sufficient evidence to support
an increase in dose to 800 mg/day [40].

2.4 Pediatric studies of efavirenz and rifampin
interactions
There are very limited data on the pharmacokinetic interactions
between rifampin-containing TB treatment and efavirenz in
children. Our literature review revealed only one published
study to date [41]. Among 15 HIV/TB co-infected children
treated with standard efavirenz-based HAART and rifampin-
containing TB treatment, a wide inter-patient variability in
efavirenz concentration as well as a bimodal distribution of
efavirenz trough concentrations was observed [41]. Overall, TB
therapyhadnosignificant influenceonmeanchange inefavirenz
concentration in the children but 60 and 53% of them had
efavirenz trough concentration < 1000 ng/ml during and after
antitubercular therapy, respectively. Contrary to expectations,
four children with slow metabolizing phenotype had higher
efavirenz concentrations during antitubercular therapy than
when they were off the rifampin-containing TB treatment [41].
Viral load data were available in 13/15 children, 11 of whom
had full suppression of HIV RNA at 6 months of HAART.
Of the two children who had detectable viral load, both had
efavirenz concentration < 1000 ng/ml. These data suggest that
current dosing of efavirenz may be suboptimal in most children
irrespective of antitubercular therapy.

2.5 Pharmacogenetics of efavirenz therapy
There is substantial inter-individual variability in the phar-
macokinetics of efavirenz. Population pharmacokinetic studies
have found the coefficient variation in apparent oral clearance
of efavirenz to range from 40 to 55% [29,42,43]. The variability
in plasma concentrations in response to the fixed adult dose
of 600 mg is up to 120% [30]. The variability in efavirenz
pharmacokinetics is probably due to a combination of fac-
tors including biologic, exogenous and genetic factors. Unlike
the strong and consistent association between CYP2B6
516G>T single nucleotide polymorphism (SNP) and efavir-
enz exposure [44,45], there is no conclusive evidence to suggest
that biological factors such as gender and body weight
significantly influence efavirenz plasma concentrations.
While some authors found higher efavirenz concentrations
in women compared to men [46], others have found no
sex-related differences in efavirenz concentrations [29,47-49].
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Likewise, some studies found body weight to be associated
with efavirenz plasma concentrations or clearance [44,49],
while others have not [34,46,50]. On the other hand,
ethnicity or race (probably a reflection of host genetics)
has been consistently associated with efavirenz concentra-
tions such that Blacks or Asians tend to have higher efavirenz
concentrations than Whites [29,34,46,48,49,51].
CYP2B6, the main metabolic enzyme for efavirenz, is

highly polymorphic and is subject to pronounced inter-
individual variability in expression and activity [52], and
genotyping for functional SNPs has proven to be useful in
the prediction of efavirenz concentrations in pharmacokinetic
studies [53,54]. In particular, the CYP2B6 c.516G>T is a
common polymorphism (21 – 38% allele frequency) [55]

that has been consistently associated with reduced enzyme
activity and higher efavirenz exposure in studies of dif-
ferent populations with varied racial and ethnic back-
grounds [51,53,56-58]. The influence of CYP2B6 516G>T
SNP on efavirenz disposition has also been observed in
children [59,60], as well as during co-administration with
rifampicin-containing TB therapy [33,34]. The more recently
described CYP2B6 c.983T>C variant with up to 10% allele
frequency is also associated with lower enzyme activity and
higher efavirenz concentrations but appears to be exclusively
found in populations of African descent [54,61,62]. Other
CYP2B6 polymorphisms that have been identified have
either minimal impact on efavirenz metabolism, or are rela-
tively rare (i.e., < 5% allele frequency) [55], and recently,
CYP2A6 genetic polymorphisms [18,44,50], CYP3A4*1B and
CYP3A4_rs4646437 [44], have been also found to influence
efavirenz plasma concentrations or clearance.

3. Nevirapine

Nevirapine is the other NNRTI that is widely available for
HIV treatment in resource-limited settings. Nevirapine was
one of the earlier drugs to be developed and introduced into
treatment regimens for HIV-infected patients in 1996.

3.1 Metabolism
Like efavirenz, nevirapine is extensively biotransformed via
oxidative metabolism by the CYP pathway to form several
hydroxylated metabolites in vivo and in vitro. In vitro studies
with human liver microsomes suggest that oxidative metab-
olism of nevirapine is mediated primarily by CYP3A4 and
CYP2B6 enzymes. Hence, substances that induce or inhibit
the CYP enzyme system could have a profound effect on the
metabolism of nevirapine, by decreasing or increasing blood
levels of nevirapine, respectively. For example, rifampicin and
corticosteroids are inducers and would decrease blood levels
while fluconazole is an inhibitor of the CYP enzyme system
and could thus increase plasma levels of nevirapine during
concurrent administration [21].
Nevirapine biotransformation involves extensive hydroxyl-

ation and glucuronidation of hydroxylated metabolites. The

metabolites are then largely excreted into the urine, where
2-hydroxy, 3-hydroxy and 12-hydroxy nevirapine glucuronides
account for 68% of the total. Thus, CYP metabolism, glu-
curonide conjugation and urinary excretion of glucuronidated
metabolites represent the primary route of nevirapine bio-
transformation and elimination in humans [63]. Formation of
2- and 12-hydroxy nevirapine is mediated by CYP3A4/5,
while that of 3- and 8-hydroxy nevirapine by CYP2B6.

In clinical studies, nevirapine is readily (> 90%) absorbed
after oral administration in healthy volunteers and in patients
with HIV infection [64]. After a single 200 mg dose, plasma
nevirapine concentrations reach a maximum of 2 µg/ml by
4 h post-dose and decline log linearly thereafter, resulting in
a terminal phase half-life of ~ 45 h; steady-state plasma
concentrations of nevirapine would be higher. Nevirapine is
an inducer of CYP metabolism, thereby, auto inducing its
own metabolism and reducing its half-life from 45 to 30 h
after 2 weeks of dosing with 200 mg/day compared with a
single dose [65]. In adults, nevirapine metabolism does not
change substantially with age (range 18 – 68 years) and a
review of the literature failed to find a significant association
between sex and nevirapine pharmacokinetics [66].

3.2 Influence of TB therapy on nevirapine
pharmacokinetics
Rifampicin induces the expression and activity of the CYP
metabolic enzymes in the liver [67,68], thereby, greatly reducing
plasma concentration and exposure to nevirapine during
concomitant treatment with both drugs [69]. Cohen et al.
observed a significant decrease in the ratio between the
exposure to nevirapine and its inactive 12-hydroxy metabolite
(produced primarily by CYP3A4) in the presence of rifampin-
containing TB treatment indicating enhanced metabolism of
nevirapine by CYP3A4 [70]. The therapeutic range of nevira-
pine is generally considered to be 3.4 – 12 µg/ml and several
studies (in patients without TB) have found an association
between low nevirapine trough levels and suboptimal res-
ponse to treatment [71-74]. Hence, some treatment guidelines
recommend therapeutic drug monitoring and maintaining
nevirapine levels within this range by appropriate dose adjust-
ment [75]. The interaction between nevirapine and rifampicin
has been studied using three different approaches (pharma-
cokinetic studies, observational cohort studies and clinical
trials), all providing different perspectives on the issue.

3.3 Pharmacokinetic studies
Pharmacokinetic studies in patients on concurrent rifampicin
treatment have shown variable reductions in nevirapine blood
concentrations ranging from 10 to 68% [49,70,76-79]. Studies
done in Indian [78] and African [70] HIV co-infected TB
patients found a significant proportion with sub-therapeutic
plasma nevirapine concentrations. Ramachandran et al. found
that 8/13 patients studied had nevirapine Cmin < 3 µg/ml [78].
Unlike the interaction with efavirenz where some patients
paradoxically have increases in efavirenz concentrations during

Dose adjustment of the NNRTIs during concurrent rifampicin-containing TB therapy
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co-administration with rifampin [24,41], as shown in Figure 3,
all 13 patients who received nevirapine in the presence of
rifampin showed significant reductions in Cmax (A), Cmin (B)
and AUC (C) in the presence of rifampicin compared to
values in the absence of rifampicin. An attempt was made to
overcome this interaction by increasing the dose of nevirapine
from 200 to 300 mg twice daily in patients with trough
nevirapine levels < 3 µg/ml [78]. While this resulted in
therapeutic blood levels in the seven patients who had sub-
therapeutic concentrations and no adverse events, the study
was limited by a small sample size and the short (2 weeks)
duration of treatment with the higher dose. In a population
pharmacokinetic study of nevirapine in South African
patients, the simulations suggested that an increased dose
of 300 mg twice daily would achieve adequate nevirapine
concentrations in most patients during rifampicin-containing
anti-TB treatment [77].

3.4 Observational studies
In a retrospective analysis of a large cohort of HIV-infected
patients in south Africa, Boulle et al. showed that the
probability of virological failure was higher when patients
initiated nevirapine-based HAART while on rifampicin but

not when they initiated efavirenz-based HAART (adjusted
odds ratio 1.7, 95% CI 1.2 – 2.6) (36) [80]. However, if
TB developed while patients were stable on nevirapine-
based treatment, the failure rates were similar to those on
efavirenz. Several studies have shown that despite expected
reductions in serum levels of nevirapine, values remained
above the inhibitory concentrations of most wild-type
strains with satisfactory immunological and virological
responses [76,79,81,82]. Among 74 Thai patients, Autar et al.
reported that 86% had nevirapine plasma concentra-
tions within the therapeutic range during rifampicin co-
administration [82]. A retrospective Spanish study of
32 patients reported that 74% of patients with concomitant
nevirapine and rifampicin attained undetectable viral
loads [81]. A Thai cohort study of 70 patients on concomitant
nevirapine and rifampicin found that virological suppression
at 60 weeks was similar to a control group without rifampicin
treatment [83,84]. Although these data are reassuring and
suggest that the majority of patients respond well to treat-
ment in spite of the drug–drug interaction, it is difficult to
generalize these findings to other populations due to differ-
ences in nutritional status, genetics and the retrospective
nature of the studies.
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Figure 3. Nevirapine Cmax (A), Cmin (B) and AUC (C) in 13 patients with HIV and tuberculosis in the absence and presence of
rifampicin. Nevirapine and rifampicin were administered at standard dosage and patients were in steady-state. Rifampicin co-
administration caused a mean reduction in Cmax by 42%, Cmin by 53% and AUC by 46%.
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3.5 Clinical trials
The key question of whether nevirapine (in the standard or
higher dose) when administered along with rifampicin results
in an increased risk of virological failure can only be answered
through clinical trials with simultaneous therapeutic drug
monitoring and determination of virological outcomes at
set time points. In a small clinical trial conducted in Thailand
in HIV co-infected TB patients, it was observed that the
48-week efficacy of antiretroviral treatment (based on immu-
nologic and virologic responses) was similar in patients treated
with 400 or 600 mg/day of nevirapine [85]. A high percentage
of suboptimal levels were found during the 200 mg/day lead-
in period whereas the 200 mg twice a day lead-in was
associated with more drug hypersensitivity. The authors con-
cluded that nevirapine 200 mg twice a day should be sufficient
for most Thai HIV-infected patients receiving rifampicin.
Manosuthi et al. conducted another randomized clinical trial
(the N2R study) comparing the efficacy and plasma drug
concentrations of nevirapine and efavirenz in combination
with TB treatment. Blood levels of the NNRTIs were corre-
lated with the proportion of patients with undetectable plasma
viral load at 48 weeks of ART. This study showed that low
drug exposure and low body weight were important predictors
for treatment failure and also found a significant correlation
between treatment failure and reduced nevirapine trough
levels [86]. Swaminathan et al. compared the efficacy of
once-daily nevirapine (400 mg) versus efavirenz (600 mg)
in combination with a dual NRTI backbone among HIV-
infected TB patients on antitubercular therapy and found
that virological suppression was significantly worse with the
nevirapine regimen; 50/59 in the efavirenz arm and 38/57
patients in the nevirapine arm had VL < 400 copies/ml at
24 weeks [87]. In this study and many others, the patients
were already on rifampicin when ART was initiated and
nevirapine was given at a lead-in dose of 200 mg for the first
2 weeks of therapy, potentially resulting in low blood levels
and the development of resistance mutations during that
period leading to poor outcomes.

3.6 Pediatric studies
Nevirapine is the backbone of first-line HAART, usually in
combination with two NRTIs as part of a three-drug fixed-
dose combination (FDC) in resource-limited settings. Phar-
macokinetics of many antiretroviral drugs is highly variable
in children with absorption, distribution, hepatic metabolism
and renal function all changing with age [88]. Given that
maturation of the hepatic CYP enzymes is generally not com-
plete till 2 – 5 years of age, younger children require higher
doses/kilogram body weight of drugs metabolized by this
system [89]. Several generic pediatric FDCs are now available
that contain nevirapine in a higher ratio to the other drugs
(stavudine and lamivudine) and simplified dosing recommen-
dations have been made by the WHO for use by healthcare
personnel in the field. Studies performed in Thailand,
Africa and India using these pediatric FDCs have generally

shown adequate nevirapine exposure and satisfactory short-
term clinical and immunological outcomes [90-92]. However,
long-term data are lacking and in view of the sub-therapeutic
blood levels observed in a significant proportion of children,
especially younger ones, more studies are required.

Apart from age, the factors known to influence nevirapine
drug levels include co-administered drugs and pharmacoge-
netic variability, as in adults [93,94]. Saitoh et al. studied
HIV-infected children who received nevirapine as a compo-
nent of HAART and examined the association between
CYP2B6 (G516T) and ABCB1 (C3435T) gene polymorph-
isms on the one hand and plasma concentrations of nevirapine
and clinical responses to ART on the other [94]. This study
demonstrated that children with the CYP2B6 516TT geno-
type may have a better response to therapy due to a favorable
pharmacokinetic profile. In a study in Indian children on
nevirapine-based HAART, this polymorphism was found to
be one of the factors significantly influencing drug levels
(Swaminathan, pers. commun., unpublished data).

One factor that has not been given much attention is the
impact of malnutrition on nevirapine levels. A study con-
ducted in Malawi and Zambia suggested that stunting (low
height for age, suggestive of chronic malnutrition) may be
associated with lower blood levels of nevirapine, while wasting
(low weight for height) was associated with higher levels [91].
Findings in Indian children are very similar; factors signifi-
cantly impacting (lowering) nevirapine levels included age
< 3 years and stunting (Swaminathan, unpublished data).
The impact of malnutrition on antiretroviral drug levels and
its role in drug metabolism, pharmacokinetics and response to
treatment deserves further study, because the majority of chil-
dren initiating treatment in resource-poor settings, especially
those with TB, are malnourished.

Data on the influence of concomitant rifampicin on nevi-
rapine blood levels in HIV-infected children are limited.
Kamateeka et al. observed that the clinical, immunological
and virological outcomes in 26 Ugandan children receiving
Triomune� (NVP/3TC/d4T)-based HAART with concom-
itant anti-TB therapy was similar to 101 children without
TB receiving the same HAART regimen [95]. Oudijk et al.
conducted a pharmacokinetic study in 21 Zambian children
< 3 years co-treated with Triomune FDC and rifampicin-
based TB therapy and reported substantial reductions in
nevirapine concentrations in young children receiving con-
current rifampicin which led them to suggest that an increase
in dose may be required [96].

3.7 Genetic determinants of nevirapine
pharmacokinetics
The majority of pharmacogenetic studies to date have focused
on efavirenz; however, a few recent studies have investigated
the influence of genetic polymorphisms on nevirapine.
Patients with the 516TT polymorphism in the CYP2B6
enzyme were observed to have a 1.7-fold increase in plasma
AUC of nevirapine compared with 516GG patients [58].
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Similar findings from Uganda [97] and India [98] confirmed the
prominent role of CYP2B6 in nevirapine elimination; how-
ever, the difference in blood levels between patients with the
homozygous mutant and wild forms of the allele were less
pronounced than in the case of efavirenz. Other CYP poly-
morphisms such as CYP2B6 C1459T and CYP3A4 A392G as
well as polymorphisms in the MDR gene (ABCB1 C3435T)
have not been shown to have much impact on nevirapine
pharmacokinetics [94,99]. Overall, these findings suggest that
pharmacogenetics has the potential to be used as a useful tool
in the management of HIV-infected patients and could help
design regimens and drug dosages with minimal toxicity and
maximum effectiveness.

4. Conclusions

The NNRTIs, efavirenz and nevirapine are essential compo-
nents of life-saving regimens for the treatment of HIV in
resource-limited settings. These NNRTIs in combination
with two nucleoside reverse transcriptase inhibitors are
often the only options available to patients with HIV/TB
co-infection requiring rifampicin-containing therapy in areas
devastated by the HIV and TB epidemics as rifabutin is not
available to allow the use of protease inhibitors in alternate
regimens. However, one unresolved issue for the effective
use of these NNRTIs in the setting of rifampicin-containing
therapy is the appropriate effective dose. Most of the pub-
lished pharmacokinetic studies that evaluated drug–drug
interactions between these drugs and rifampicin were small,
underpowered and often did not control for genetic factors
that influence efavirenz and nevirapine metabolism. A major-
ity of the clinical studies were observational in nature and were
also underpowered to detect the true effect of rifampicin on
NNRTI-based therapy. In addition, there were very limited
pharmacokinetic and clinical data in children. Overall, we did
not find sufficient data in the literature that could be used to
support definitive recommendations on dose adjustment of
the NNRTIs during rifampicin-containing TB therapy.
However, it does appear that one dose adjustment will not
be appropriate for all people because of wide inter-individual
differences in the disposition of these NNRTIs in the presence
of rifampin-containing TB therapy.

5. Expert opinion

5.1 Efavirenz
While the minimum effective efavirenz plasma concentra-
tion and the degree of the effect of rifampin-containing TB
therapy on efavirenz pharmacokinetics and clinical effect is
debatable, the well-known substantial inter-individual vari-
ability (> 100% coefficient of variation) in efavirenz plasma
concentrations after fixed standard dosing has the potential
to place some individuals at risk of supra-therapeutic or sub-
therapeutic concentrations. The ultimate goal of efavirenz
dose adjustment during rifampicin-containing therapy is

to avoid sub-therapeutic concentrations while minimizing
unnecessary increase in efavirenz plasma exposure that will
lead to increase frequency of treatment side effects in some
individuals. Therefore, one would expect that increasing efa-
virenz dose by 200mg/day will probably not be appropriate for
all patients, as it does not take into consideration the vari-
ability due to genetic factors. The frequency of the slow metab-
olizing genotype, CYP2B6 516TT genotype, is about 25%
of African and Indian populations [33,34,56]. Consequently,
dosage adjustment of efavirenz during co-administration with
rifampin based on a Spanish study may not be applicable to
other populations such as Africans or Indians. To our knowl-
edge, no published studies in which efavirenz concentration
was measured on and off rifampin-containing TB treatment
in the same patient at different times has shown a statistically
significant difference with p < 0.05 [23,24]. Because efavirenz
itself induces CYP2B6 (i.e., autoinduction), it is possible that
rifampicin cannot increase CYP2B6 expression beyond that
resulting from chronic efavirenz exposure. Efavirenz dose
adjustment during rifampicin-containing TB therapy will
need to be individualized-based genetic polymorphisms of
CYP2B6 enzyme, the one single important predictor of efa-
virenz disposition to date, or based on a combination of
clinical and genetic factors. Increased understanding of the
interactions between rifampicin and functional variants of
efavirenz metabolizing enzymes is urgently needed to guide
the management of efavirenz–rifampin pharmacokinetic
interactions. In addition, future pharmacokinetic and clinical
trials must include children as there is a dearth of data in
this population.

5.2 Nevirapine
Current evidence suggests that nevirapine is inferior to
efavirenz when given to patients on rifampicin-containing
TB therapy, using standard methods of administration and
in standard doses. The difference in rates of virological
suppression between nevirapine and efavirenz when used
along with rifampicin has ranged from 0 to 18% in different
studies [87-89]. Most studies have used nevirapine in the
conventional dose of 200 mg for the first 2 weeks before
dose escalation. When administered in this fashion in the
presence of enzyme induction, the levels achieved in the first
2 weeks have been very low, probably overcoming the low
genetic barrier to resistance of HIV-1 and leading to the
development of resistance mutations. The one small trial that
did use nevirapine during the lead-in phase in the higher dose
of 200 mg twice a day did not report better efficacy; on the
other hand, adverse events were more frequent [88]. The safety
and efficacy of initiating nevirapine at the higher lead-in
dose is currently being tested in the CARINE 12146 trial
in Mozambique [100]. Hence, there is insufficient evidence at
this time to recommend a higher dose of nevirapine for
patients on rifampicin, though there is a much better ratio-
nale to start with the full dose, under close monitoring. It is
possible that host genetics may influence the decision to dose
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adjust nevirapine during co-administration with rifampicin
and this needs to be investigated in future studies.
While nevirapine may be inferior to efavirenz for patients

taking rifampicin, it should still be considered the alternate
drug in situations where efavirenz cannot be administered
(e.g., pregnancy, adverse reactions or intolerance to efavirenz).
It would be effective in a majority of patients (> 75%)
and hence a life-saving intervention in the absence of other
alternatives. An important point to consider is the sequence
of the two treatments. For patients who are stable on nevi-
rapine-based therapy (presumably with low or undetectable
viral loads), the addition of rifampicin-containing TB treat-
ment does not appear to result in any therapeutic penalty.
Future research should examine these different scenarios in
which patients get treated in order to recommend appropriate
case management strategies. Studies in young children with
TB and HIV should address the question of whether higher
doses of nevirapine would be required in order to overcome
the effect of both age and rifampicin on its metabolism.

As efavirenz is contra-indicated in children under 3 years,
nevirapine is the only NNRTI that can be used and safety and
efficacy in this setting need to be established.
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