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Abstract

Background: The DevR response regulator is implicated in both hypoxic adaptation and virulence of Mycobacterium
tuberculosis (M. tb). DevR regulon genes are powerfully induced in vivo implicating them in bacterial adaptation to host
control strategies. A better understanding of DevR function will illumine the way for new strategies to control and treat
tuberculosis.

Methodology/Principal Findings: Towards this objective, we used a combination of genetic, microbiological, biochemical,
cell biological tools and a guinea pig virulence assay to compare the hypoxic adaptation and virulence properties of two
novel M. tb strains, namely, a devR disruption mutant, Mut1, that expresses C-terminal truncated N-terminal domain of DevR
(DevRNTD) as a fusion protein with AphI (DevRN-Kan), and its complemented strain, Comp1, that expresses intact DevR along
with DevRN-Kan. Comp1 bacteria exhibit a defect in DevR-mediated phosphosignalling, hypoxic induction of HspX and also
hypoxic survival. In addition, we find that Comp1 is attenuated in virulence in guinea pigs and shows decreased infectivity
of THP-1 cells. While Mut1 bacilli are also defective in hypoxic adaptation and early growth in spleen, they exhibit an overall
virulence comparable to that of wild-type bacteria.

Conclusions/Significance: The hypoxic defect of Comp1 is associated to a defect in DevR expression level. The
demonstrated repression of DevR function by DevRN-Kan suggests that such a knockdown approach could be useful for
evaluating the activity of DevRS and other two-component signaling pathways. Further investigation is necessary to
elucidate the mechanism underlying Comp1 attenuation.
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Introduction

Mycobacterium tuberculosis (M. tb) is a versatile intracellular

pathogen that has the ability to either cause active disease or

produce a persistent latent infection. Tubercle bacilli exhibit

dramatically contrasting phenotypes under these two conditions;

during frank disease they are virulent, multiply actively and are

susceptible to anti-tubercular therapy while during latent infection

they display the property of non-replicative persistence, remain

dormant and are quite resistant to anti-tubercular drug regimens.

Therefore, an understanding of the dormant bacterial state is vital

in order to devise strategies targeted towards their control and

elimination. The interaction of M. tb with the host is likely to be

dynamic and complex and to involve multiple phases of

adaptation and regulatory networks. M. tb genome sequencing

has revealed the presence of a panoply of potential regulatory

molecules that comprise of transcriptional regulators, sigma factors

and signaling systems including two-component systems (TCS)

and eukaryotic-like serine threonine protein kinases/phosphatases

[1]. All of these are likely to play a dynamic role in bacterial

adaptation to the changing environmental conditions within the

host.

Bacterial TCS are involved in the control of a wide variety of

physiological processes ranging from nutrient uptake to virulence.

TCS of M. tb have been intensely studied by many laboratories

and as expected, several of these systems are responsible for

bacterial adaptation within the host [2,3]. One of the best

characterized TCS of M. tb is devRS (also called dosRS). devR
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(Rv3133c or dosR) was identified as a differentially expressed gene

in virulent M. tb H37Rv [4,5] and it encodes DevR which is

activated by transfer of phosphosignal from DevS and/or

Rv2027c/DosT [6–8]. It is directly involved in the hypoxia-

induced dormancy response [9–11] and also in virulence [12–15].

Moreover, DevR and its target genes are highly expressed in

animals and cell infection models which suggests that bacteria rely

on them for adaptation in vivo [16–20].

DevR is a classical response regulator which contains a N-

terminal phosphorylation domain and a C-terminal DNA binding

domain [5]. Phosphorylation of DevR is essential for the activation

of its DNA binding function, its autoinduction and the induction of

DevR regulon genes expression [21–23]. A novel devR mutant

strain, Mut1, was generated serendipitously in our laboratory by

an in-frame insertion of a promoterless kanamycin resistance

cassette into the devR gene at an unique PpuMI site which results

in the expression of C-terminal truncated DevR as a DevRNTD-

AphI fusion protein (DevRN-Kan). The fusion protein confers

kanamycin resistance to the mutant bacterium and enabled its

original selection [13]. Its complemented strain, Comp1, expresses

intact DevR from its native 327 bp upstream region along with

DevRN-Kan fusion protein [13]. In the present study, we studied

the properties of guinea pig-passaged Mut1 and Comp1 bacteria

alongside wild-type H37Rv (WT) bacteria. We find that Mut1

bacilli exhibit a defect in hypoxic adaptation and early growth

within spleen but exhibited overall virulence nearly comparable to

WT bacilli. Interestingly, in Comp1 bacteria, DevRN-Kan

competes for the activating phosphosignal resulting in a defective

hypoxia adaptive response. We also find that Comp1 is attenuated

in virulence. The potential implications and possible application of

these findings are discussed.

Results

DevRN-Kan Inhibits HspX Induction in Comp1 Bacteria
hspX is a DevR-regulated gene and its expression is a reliable

marker of DevR regulon expression. HspX expression was

strongly induced in hypoxic WT cultures (Fig. 1, lanes 1–2) in

contrast to the lack of expression in Mut1 bacteria. Surprisingly

however, HspX was only weakly expressed in Comp1 bacteria

(that expresses both DevRN-Kan and full-length DevR proteins)

under similar conditions. To correlate with this defect, DevR

expression was assessed; while it was induced in hypoxic WT

cultures (Fig. 1, lanes 1–2), its level declined in Comp1 bacteria

(Fig. 1, lanes 3–4). Furthermore, DevR level was consistently lower

relative to DevRN-Kan (,55% and ,20% under aerobic and

hypoxic conditions respectively, a representative blot is shown in

Fig. 1, lanes 3–4).

The Expression Defect in Comp1 Is Ascribed to Inhibition
of Signaling by DevRN-Kan

The skewed protein ratios (possibly due to differences in

promoter strength) suggest that DevRN-Kan may interfere with

intact DevR function in Comp1 bacteria. This hypothesis was

tested by assessing HspX expression in Comp2 strain that was

generated by introducing pDSDevR into a complete devR deletion

mutant strain (Tables 1 and 2). HspX induction was restored in

Comp2 (Fig. 1, lanes 5–6), indicating that the hypoxic expression

defect in Comp1 was due to DevRN-Kan-mediated inhibition.

Towards understanding the underlying basis of this defect, the

promoters expressing intact DevR and DevRN-Kan proteins were

compared since in Comp1 bacteria, full-length DevR is expressed

from the complementing plasmid through its upstream promoter

(as in pdevR-2) while DevRN-Kan is expressed from its natural

genomic location (as in pOperon-2). From the GFP reporter

activity it is evident that pOperon-2 displays both aerobic and

DevR-dependent inducible expression under hypoxia while

pdevR-2 shows constitutive and moderate activity that is

independent of DevR (Fig. 2). Considering the results of

immunoblotting and reporter assays, the observed decline in

DevR protein level during hypoxia in Comp1 bacteria is likely to

be a consequence of a defect in expression (since DevR ectopic

expression from a constitutive promoter is not sensitive to

induction during hypoxia). By contrast, DevRN-Kan levels maybe

stabilized as a fusion protein and/or due to DevR expression from

the inducible promoter (since Comp1 bacteria synthesize DevR,

albeit at low levels).

Figure 1. Effect of DevRN-Kan and full-length DevR co-expression on DevR regulon gene expression. M. tb lysates were electrophoresed
and subjected to immunoblot analysis using polyclonal antibodies to HspX (top panel), DevR (middle panel) and SigA (bottom panel). Lanes 1, 3, 5, 7,
9, 11 and 13 represent aerobic culture and lanes 2, 4, 6, 8, 10, 12 and 14 represent 5 days standing hypoxic cultures. Anti-HspX immunoblots were
developed for longer periods to visualize HspX in Comp1 bacterial lysates. Representative blots from 2 to 4 independent cultures are shown.
doi:10.1371/journal.pone.0009448.g001

DevR Signaling in M.tb
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The inhibitor function of DevRN-Kan was confirmed in two

additional M. tb strains (Table 2). In Comp3 bacteria (generated

in H37Rv background and expressing DevRN-Kan and WT

DevR proteins, each from the native inducible promoter), HspX

expression was induced (Fig. 1, lanes 7–8), indicating that

DevRN-Kan inhibitory activity is overcome in the presence of

WT DevR levels. However, HspX induction was not rescued in

Comp4 bacteria (generated in a complete devR deletion strain

that produced a skewed ratio of DevRN-Kan and full-length

DevR proteins), akin to Comp1 bacteria (Fig. 1, lanes 9–10).

Note that although DevRN-Kan was expressed at an elevated

level from its ectopic location in Comp3 and Comp4 strains vs.

from its native location in Comp1 (Fig. 1), HspX expression was

consistently restored in Comp3 bacteria but not in Comp4

bacteria. Likewise, absence of HspX induction in Comp4 but not

Comp2 bacteria (both in complete devR deletion background) is

attributed to the presence of DevRN-Kan in the former (Fig. 1).

These results establish that the hypoxic defect of Comp1 in terms

of HspX expression is associated to a defect in DevR expression

level.

We next asked whether DevRN-Kan competed with DevR for

the activating phosphosignal in Comp1 bacteria by reconstituting

the phosphosignaling reaction in vitro. Briefly, DevRN-Kan coding

sequences (exactly as expressed in Mut1 bacilli) were cloned, the

overexpressed protein was purified and used with full-length DevR

in a DevS,P-driven competition assay (Fig. 3). The phosphosignal

was transferred to DevR and DevRN-Kan inhibitor with

approximately similar efficiency when they were present at

equimolar concentrations. Importantly, the signal was diverted

majorly to the inhibitor at higher concentrations of DevRN-Kan,

which mimics the protein ratios in vivo, indicating that preferential

phosphorylation of DevRN-Kan is likely to occur in vivo. Moreover,

in a phosphosignaling competition assay performed with DevRN

protein (without the kanamycin resistance cassette), similar results

were obtained (not shown), thereby attributing the inhibition to

DevRN in the fusion protein.

All these findings, namely, (a) efficient diversion of phospho-

signal to DevRN-Kan in vitro, (b) skewed DevRN-Kan: DevR

protein ratio in vivo resulting in diversion of the phosphosignal to

the former and, (c) defective HspX induction in Comp1 and

Table 1. Plasmids used in this study.

Plasmid Description Reference

pDSdevR devR gene cloned in pFPV Hyg (low copy number plasmid), DevR expressed
from 327 bp devR upstream promoter, Hygr

[13]

pJFR19 3 kb amidase promoter cloned in integrative plasmid pMV306H, Hygr [32]

pOperon-2 pFPV27 (promoter less GFP) containing operon promoter (21454 to +12) with
reference to the devR translational start site, Hygr

This study

pdevR-2 pFPV27 (promoter less GFP) containing devR promoter (2390 to +164) with reference
to the devR translational start site, Hygr

[21]

pAVdevRN -Kan DNA coding for DevRN - Kan fusion protein cloned in pJFR19, protein expressed from native
operon promoter (described in [21]), Hygr, Kanr

This study

pDSS578 pPROEx-HTb carrying wild type devS gene D. K. Saini, Ph.D. thesis, AIIMS

pET-28-a Vector for overexpression of His6-tagged recombinant proteins, Kanr Novagen

pKKNKan pET-28-a based plasmid for overexpression of DevRN-Kan fusion protein, Kanr This study

pAVDevR pET-28-a based plasmid for overexpression of full-length DevR protein, Kanr This study

doi:10.1371/journal.pone.0009448.t001

Table 2. M. tb strains used in this study.

M. tb strain Description Expression Reference

DevR
Aer Hyp

DevRN-Kan
Aer Hyp

H37Rv WT + +++ 2 2 [13]

Mut1 devRDCTD, expresses DevRN-Kan protein from its native location (fusion
gene created by in-frame insertion of promoterless kanamycin resistance
cassette at the PpuMI site within devR gene), includes entire N-terminal
signaling domain of DevR [residues 1–145], Kanr

2 2 + ++ +++ [13], this study

Mut2 Complete DdevR deletion 2 2 2 2 [12]

Comp1 M. tb Mut1 complemented with plasmid pDSDevR, Kanr, Hygr + Q +++ +++ [13]

Comp2 M. tb Mut2 complemented with pDSDevR, Kanr, Hygr + Q 2 2 This study

Comp3 H37Rv containing pAVDevRN-Kan, Kanr, Hygr + ++ + + + +++ This study

Comp4 M. tb Comp2 containing pAVDevRN-Kan, Kanr, Hygr + Q +++ +++ This study

Aer, aerobic; Hyp, hypoxic.
+, ++ etc., relative levels of DevR and DevRN-Kan proteins (semi- quantitative).
2, absence of DevR.
Q, decline in hypoxic level.
doi:10.1371/journal.pone.0009448.t002
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Comp4 bacteria, conclusively establish that DevRN-Kan inhibits

DevR signaling.

Comp1 Bacteria Are Defective in Hypoxic Survival
As DevR plays a crucial role in the mycobacterial adaptive

response to hypoxia, we evaluated the survival properties of

Comp1 bacteria under hypoxia (Fig. 4). Hypoxic viability was

sustained in WT bacilli and on day 50, ,105% of the bacteria

remained viable (relative to maximum CFU on day 10). By

contrast, the hypoxic survival defect in Mut1 bacilli was evident

from day 5 (the earliest time point when bacteria were sampled)

and only ,2% of the initial bacterial load (maximum CFU) were

viable on day 50. If we compare initial and final number of

bacteria, there is little difference in hypoxic viability between

Comp1 and WT strains. However, under hypoxic conditions,

Comp1 grew more rapidly than WT bacteria during the first 10

days and thereafter its viability was not sustained and on day 50,

approximately 5% of the bacteria were viable relative to

maximum CFU observed on day 10. All the strains grew at

similar rates and exhibited similar viability under aerobic

conditions. The hypoxia survival defect of Comp1 bacteria is

attributed to an insufficient level of activated DevR. Another

possible underlying reason for the defect in Comp1 bacteria is that

expression of DevR from the natural genomic location and from

complementing plasmids is very different and these differences

may affect other proteins involved in the two-component system

signaling in an unknown manner.

M. tuberculosis Comp1 Strain Is Attenuated in Guinea
Pigs

Passaged Mut1, Comp1 and WT bacteria were tested in the

guinea pig virulence model [24,25]. At 6 weeks, a nearly similar

number of lesions were visually scored for both the WT and

mutant strains. By contrast, fewer lesions were visually scored in

the Comp1 group (P,0.05 in comparison to WT and Mut1

groups, Table 3). The spleens of WT and mutant-infected groups

were also significantly enlarged in comparison to Comp1 group of

animals (Table 3 and Fig. 5A). The extent of lung and liver

granuloma (P,0.05 in comparison to WT group) and lung CFU

were lower in the Comp1 group (Fig. 5B and Table 3) and spleen

CFU was lower in both mutant and complemented groups

(P,0.05 in comparison to WT, Fig. 5B).

To evaluate disease progression, a second infection of 13 weeks

was performed. An increase in visually scored tubercles was noted

in all the groups; however, once again the number of visually

scored lesions was lower in the Comp1 group (P,0.05, Table 3).

Progressive splenic enlargement was noted at 13 weeks in WT and

Mut1 groups but not in the Comp1 group (Table 3). CFUs in

lungs and spleens also increased at 13 weeks for all the strains.

Although fewer bacteria were recovered from lungs and spleen of

Figure 3. DevRN-Kan competes efficiently with full-length DevR for phosphosignal from DevS. Reaction mixtures containing purified
DevS,P (5 mM) plus DevRN-Kan (0.83 to 30 mM) and full-length DevR (5 mM) proteins were incubated at 25uC for 2 minutes. Samples were analyzed
by 15% SDS-PAGE and subjected to phosphorimaging (top panel) and Coomassie blue staining (bottom panel).
doi:10.1371/journal.pone.0009448.g003

Figure 2. Comparison of promoter activity using GFP reporter
assay. GFP fluorescence in M. tb WT and Mut1 cultures carrying operon
(pOperon-2) and devR (pdevR-2) promoter constructs under aerobic
and hypoxic conditions.
doi:10.1371/journal.pone.0009448.g002

DevR Signaling in M.tb
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Mut1-infected animals at both 6 and 13 weeks of infection, with

the exception of a significant reduction in spleen CFU at 6 weeks

(Fig. 5B), the differences were not significant compared to the WT

group (Fig. 5B). However, a significant growth defect of Comp1

bacilli persisted at 13 weeks in both organs (Fig. 5B). The extent of

organ granuloma correlated quite well with bacterial CFU and

visual scores (Table 3). In qualitative terms, granulomas in liver

were composed essentially of lymphocytes, macrophages and large

numbers of epithelioid cells. In the lung, epithelioid cells were rare

and the granuloma consisted mainly of lymphocytes and

macrophages (not shown). There was very little necrosis in both

the organs. Overall, the results of the two experiments are

consistent with an attenuation of Comp1 bacteria (P,0.05

compared to WT) and a modest lowering of virulence for Mut1

bacteria that was not significant.

Reduced Infectivity of Comp1 Bacilli in THP-1 Infection
Model

The strains were next assessed in the THP-1 cell infection

model to determine whether Comp1 bacteria possessed an

intracellular survival defect (Fig. 6). Passaged and laboratory

cultured organisms of all the strains exhibited quite similar

intracellular survival and growth properties over a 7-day period

(Fig. 6). However, Comp1 bacteria displayed a reduced ability to

infect THP-1 cells in comparison to the WT and Mut1 strains

(Fig. 6 insets). For the passaged strains, the infectivity rate of the

WT and Mut1 strains was 9.8% and 8.5% compared to 4.3% for

Comp1 bacteria. Similar observations were made with the

laboratory cultured strains; only 4.3% infection was observed

with Comp1 bacteria compared to 7.4% and 6.7% for WT and

Mut1 strains, respectively. The macrophage infection assay

performed at a higher m.o.i (1 bacterium per 10 macrophages)

further confirmed the decreased infectivity of Comp1 organisms

(not shown).

Animal Passaged Mut1 Bacilli Multiply Preferentially in
Lungs

In a guinea pig virulence assay performed previously, Mut1

bacilli were observed to be attenuated in terms of visually observable

lesions and spleen CFUs [13]. However, Mut1 bacterial attenuation

was not observed in the present study. The difference between the

two studies is that the previous study was performed with Mut1

bacteria that had been repeatedly cultured in vitro during the

generation of the mutant strain, whereas the present one was carried

out with guinea pig-passaged bacteria. Since repeated in vitro culture

of pathogenic bacteria can result in their attenuation [26], we

compared animal passaged and laboratory cultured bacteria in a 6

Figure 4. Survival of M. tuberculosis strains cultured in vitro. WT,
Mut1 and Comp1 strains were grown under hypoxic (A) and aerobic (B)
conditions for upto 50 days in Dubos Tween Albumin medium as
described. The mean CFU 6 SD determined from three independent
cultures is shown as % survival with respect to number of bacteria on
day zero. &, WT; %, Mut1 and ,, Comp1.
doi:10.1371/journal.pone.0009448.g004

Table 3. Virulence comparison of passaged M. tb strains.

6 weeks 13 weeks

WT Mut1 Comp1 WT Mut1 Comp1

Visual scores# 32.2564.34 25.2565.85 860*,** 55.268.25 48.6664.96 18.568.73*,**

Lung granuloma (%) 58.7562.39 43615.77 2562.04* 67.5612.99 74.1669.95 33.3362.76*,**

Liver granuloma (%) 46.2569.43 21.6663.75 12.564.78* 68.7565.15 80.8363.27 28.567.30*,**

Spleen weight ratios‘ 1.0860.25 0.8760.40 0.2660.05*,** 3.7560.90 3.3061.54 0.5760.62*,**

Lung weight ratios 0.8060.14 0.7960.05 0.7360.14 1.8461.25 1.9660.42 0.7360.10*,**

Liver weight ratios 5.8560.37 4.5160.66 5.4860.92 7.5461.76 7.1662.19 4.1860.84*,**

#Mean total of lesion scores assigned to spleen, liver, lung and the site of injection along with its draining lymph nodes immediately after death as described [24].
*P,0.05 in comparison to WT.
**P,0.05 in comparison to Mut1.
‘Weight ratio = (organ weight/body weight) 6100.
doi:10.1371/journal.pone.0009448.t003

DevR Signaling in M.tb
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weeks side-by-side guinea pig virulence assay to determine whether

repeated laboratory culture was the underlying reason for the

observed attenuation of Mut1 bacteria. Interestingly, spleen CFUs

in Mut1 bacilli group were significantly lower relative to WT CFUs

in both passaged and laboratory cultured bacilli (Fig. S1) and these

results were consistent with our previous observations [13].

Observable lesions, liver granulomas and spleen weight ratios were

also significantly lower in laboratory cultured Mut1 bacilli infected

group (Table S1). This was also consistent with previous

observations [13] indicating that overall pathology was decreased

by laboratory passaging (P,0.05, Table S1). By contrast, passaged,

and not laboratory cultured, Mut1 bacteria exhibited prolific

multiplication in lung accompanied by a decrease in splenic CFU

load suggesting that laboratory cultured bacilli exhibited a lung-

specific defect (P,0.05, Fig. S1).

Discussion

In this study a devR disruption mutant strain, Mut1, and its

complemented strain, Comp1, were assessed for their hypoxia

Figure 5. Virulence of passaged M. tuberculosis strains in guinea pigs. (A) Pictorial representation of lungs and spleens. (B) CFU in lungs and
spleens are expressed as mean 6 SD. *, ** represent P,0.05 in comparison to WT and Mut1, respectively.
doi:10.1371/journal.pone.0009448.g005
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adaptability and virulence properties. The Comp1 strain is

novel in that it is defective in the hypoxic response. This defect

is explained by skewed expression of DevRN-Kan vs. intact

DevR protein and an associated skewing of phosphosignaling,

which likely results in insufficient availability of activated

DevR.

A key finding of this study is that Comp1 bacteria are

attenuated. We exclude the possibility of attenuation due to an

intrinsic growth defect since Comp1 bacteria multiply normally in

broth cultures and within infected THP-1 cells. However, lower

infectivity of THP-1 cells suggests a scenario wherein Comp1

bacteria could be gradually cleared over multiple cycles of

infection and result in significantly lower bacterial loads. Since

bacteria disseminate from the site of injection in the thigh to

various organs in this virulence assay [24], an infectivity and/

dissemination defect could also contribute to its attenuation.

However, differences in infecting dose as a possible reason for

differences in virulence are ruled out since an approximately equal

number of viable organisms of each strain were injected

subcutaneously per animal.

Passaged Mut1-infected guinea pigs contained significantly lower

spleen bacterial loads at 6 weeks and this was consistent with our

previous observations [13]. Although lung CFUs were also lower in

Mut1 vs. WT-infected animals, the difference was not significant.

Therefore we conclude that passaged Mut1 bacilli are overall nearly

as virulent as WT organisms. In contrast, the Comp1 strain was

attenuated by all parameters (organ inflammation, histology, visually

observable lesions and organ CFUs). Studies with various devR or dosR

mutant and complemented strains have reported virulence pheno-

types ranging from attenuation to hypervirulence and these variations

have been attributed to differences in strain construction and the use

of different models [12–15]. Our experiments indicate that animal

passaging restores the ability of Mut1 bacilli to multiply in guinea pig

lungs suggesting that a decreased capacity of laboratory cultured

organisms to establish a productive lung infection is a key aspect of

attenuation that could have occurred by repeated in vitro culturing

during Mut1 construction. It was recently suggested that the variable

results of various animal studies could be explained by differences in

both host and infecting dose [15]. Our study provides evidence that

the mode of bacterial propagation also significantly influences the

virulence phenotype.

Except for the present study performed with a disruption

mutant, all other investigations were performed with deletion

mutant strains. The strains also vary in the expression of the co-

transcribed devS gene; Mut1 expresses DevS [7], unlike a dosR

mutant [15]. Since DevRS/DosT comprise the DevR signaling

pathway and wild-type levels of dosT transcripts were detected in

Mut1 and Comp1 bacilli (data not shown), a paucity of signaling

through the kinases is unlikely to occur in Mut1 or Comp1 strains.

Therefore we attribute the hypoxia adaptation defect to the

disruption of devR function alone and not that of the kinases. We

have established in the present study that DevRN is the active

inhibitor species in the DevRN-Kan fusion protein. Moreover, the

kanamycin resistance cassette is routinely used in genetic analysis

and is not known to confer any abnormal phenotype to M. tb.

Therefore, our results establish DevRN-Kan as a signaling

inhibitor of the DevR-mediated hypoxia response and we exclude

an ‘unnatural’ function for the fusion protein in this response.

However, the effect of DevRN-Kan expression per se on other

aspects of bacterial physiology including virulence awaits further

investigation.

Importantly, the attenuated phenotype exhibited by Comp1

bacteria was stable and not modulated by animal passaging.

Further investigation is necessary to understand the mechanism

underlying attenuation of the Comp1 strain. However, the

demonstrated repression of WT DevR function by DevRN-Kan

signaling inhibitor suggests the possibility that such a knockdown

approach that intercepts bacterial signaling could be useful for

studying and perhaps for modulating the activity and function of

other M. tb signaling pathways.

Materials and Methods

The plasmids and strains used in this study are described in

Tables 1 and 2, respectively.

Construction of pAVdevRN–Kan
The devR gene was disrupted by in-frame insertion of a kanamycin

resistance cassette (kan) from pGP1–2 (kind gift from Dr. S. Tabor,

USA) at an unique PpuMI site. DevRN-Kan fusion protein-coding

Figure 6. Intracellular survival of M. tuberculosis strains. THP-1
cells were infected with various strains (A, passaged and B, laboratory
cultured strains) at a m.o.i of 1:50 (bacterium: macrophage) and the
number of intracellular viable bacteria was determined over 7 days.
Results are given as the mean 6 SD of 3 independent experiments.
(Inset) Infectivity of the three strains in THP-1 cells as determined by 2
separate experiments. *, ** P,0.05 indicate significant differences in
infectivity between Comp1 vs. WT and Mut1, respectively. N, WT; #,
Mut1 and m, Comp1.
doi:10.1371/journal.pone.0009448.g006

DevR Signaling in M.tb
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DNA sequence was cloned downstream of the native operon

promoter described earlier [21] to generate pAVdevRN -Kan.

Preparation of Passaged Bacilli
All experiments were performed with guinea pig-passaged M. tb

WT, Mut1 and Comp1 strains unless mentioned otherwise. For

passaging, 270uC frozen stocks of laboratory cultured bacilli were

thawed, resuspended in PBS and ,56106 CFU were injected

subcutaneously into guinea pigs as described [13]. Bacilli were

recovered from guinea pig spleens at 6 weeks post infection by plating

on Middlebrook (MB) 7H11 agar with OADC. Bacterial scrapings

were cultured in 7H9 medium containing Albumin Dextrose

Complex (ADC) and stored frozen at 280uC for further use.

Bacterial Culture
Frozen passaged bacterial stocks were sub cultured twice or

thrice to logarithmic phase (A595,0.4) prior to viability and

expression analysis.

Expression Analysis
Various logarithmic phase M. tb cultures were diluted to A595 of

0.025 and grown with shaking to an A595 of 0.3. A culture aliquot was

immediately harvested by centrifugation (aerobic culture). For

hypoxic cultures, 10 ml aliquots of aerobic cultures were dispensed

into 50 ml screw-capped tubes and kept standing for 5 days. Lysates

were prepared as described [27] from two to four independent

cultures at each condition. Aliquots containing 10 to 15 mg protein

were subjected to immunoblotting using rabbit polyclonal antisera as

described [19]. Anti-SigA antibody was a generous gift from Dr. T.S.

Balganesh (AstraZeneca, Bangalore). Densitometric analysis was

performed using Quantity One software (Biorad, USA). The signal

intensities derived from SigA in each lysate were used to normalize

the signal intensities from DevR and DevRN-Kan.

GFP Reporter Assay
GFP reporter activity of pOperon-2 and pdevR-2 constructs

was assessed under aerobic and hypoxic conditions as described

earlier [28]. Briefly, the M. tb strains were subcultured twice to

mid-logarithmic phase and then 3.3 ml aliquots (A595 = 0.1) were

dispensed in 5 ml Vacutainer tubes (BD) which were kept standing

(hypoxic conditions). GFP fluorescence was measured at the

specified time points.

In Vitro Phosphotransfer Competition Assays
Full length DevS (DevS578) was purified as described earlier

[29]. Full-length DevR was overexpressed and purified from E. coli

C43 harbouring pAVDevR by standard techniques. DevRN -Kan

fusion protein was purified from E. coli carrying pKKNKan by

standard techniques. DevS578 (5 mM) was autophosphorylated

using 5 mCi c - 32P-ATP (approximately 3800–4000 Ci/mmole,

BRIT, Mumbai, India) in a 20 ml reaction containing 50 mM

Tris, pH 8.0, 50 mM KCl, 25 mM MgCl2 and 50 mM ATP at

25uC for 60 min as described [7]. DevS578,P was added to a

mixture of full-length DevR (5 mM) and DevRN-Kan (at

concentrations ranging from 0.83 to 30 mM to attain molar ratios

of 1:6 to 6:1 for DevR:DevRN-Kan, respectively) and incubated

for 2 min at room temperature. Samples were electrophoresed

through a 15% SDS-PAGE and the gel was subjected to

phosphorimaging.

Assessment of Viability of M. tuberculosis Strains In Vitro
M. tb cultures were diluted to A595 of 0.005 and 10 ml aliquots

were dispensed in 50 ml tubes and grown either with shaking at

220 rpm (aerobic setup) or kept standing in 15 ml tubes (hypoxic

setup). Cultures were sampled once only from separate tubes

dedicated for each time point of the hypoxia set up. Bacterial CFU

at defined time points was estimated by plating serial dilutions in

duplicate on MB 7H11 agar containing ADC and incubating the

plates at 37uC for 6 weeks.

Guinea Pig Virulence Assay
Approval was taken from the Institutional Animal Ethics

Committee, NTI, Bangalore prior to guinea pig experiments.

Guinea pigs were infected by subcutaneous route with passaged M.

tb strains in phosphate buffered saline (approx. 56106 viable

organisms per animal) for 6 weeks and 13 weeks (6–10 animals per

group) as described [13]. The virulence assay in guinea pigs was

performed as described [13,24,25]. In this model, bacteria spread

to the lungs and spleen from the site of injection (thigh). Briefly, at

the time of sacrifice, internal organs were examined for visually

scorable lesions in spleen, liver, lung, inoculation site and its

draining lymph nodes as described [24]. Lungs and spleens were

transferred to selective Kirchner’s liquid medium for CFU

determination as described [13]. The spleens and right lower

lobes of lungs were individually homogenized in dedicated

homogenizers and serial dilutions were plated in duplicate on

MB 7H11 agar containing OADC and also on LJ slopes. The

colonies were counted after 6 weeks of incubation at 37uC.

Portions of lung and liver were fixed in 10% formalin and

processed for histopathological analysis by staining with haema-

toxylin and eosin as described previously [30]. Laboratory

cultured strains were also assessed in the 6 weeks virulence assay

(10 animals per group). The statistical significance of the

differences between the various strains for different parameters

was determined using the Mann-Whitney test.

THP-1 Infection Assays
The inocula for infection were prepared by culturing M. tb

strains with shaking to A595,0.6 in Dubos Tween Albumin. THP-

1 cell line was maintained in RPMI 1640 medium supplemented

with 10% fetal calf serum and monolayers were prepared and

infected as described [31]. Briefly, THP-1 cells were seeded at

0.256106 cells per well in 24-well tissue culture plates and were

differentiated by the addition of phorbol 12-myristate acetate

(100 nM) for 24 h. The monolayers were infected with M. tb

strains at a low m.o.i. (1 bacterium per 50 macrophages) for 20 h,

washed with incomplete RPMI 1640. Fresh complete RPMI 1640

was added to each well and the plates were incubated at 37uC for

upto 7 days. Intracellular viable bacteria on day 1, 4 and 7

postinfection were assessed by lysis of the monolayers in 0.025%

SDS, followed by plating serial dilutions as described above.

Infectivity is expressed as a fraction of the number of bacteria

internalized on day 1 to the total number of bacilli added.

Significance was determined by one-way ANOVA followed by

post-hoc analysis using Bonferroni correction.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0009448.s001 (0.05 MB

DOC)

Figure S1 Bacterial recovery (Mean plus/minus SD) from

guinea pigs infected for 6 weeks with passaged or laboratory

cultured M. tb strains. *, * *, P,0.05 in comparison to WT and

Mut1, respectively. #, P,0.05 between the passaged and the

laboratory cultured strains.

Found at: doi:10.1371/journal.pone.0009448.s002 (0.18 MB TIF)
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