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Abstract
The Exponentiated Exponential (EE) model serves as an alternative to Exponential, Weibull and Gamma models. It is
observed that EE model has been used in the analysis of complete life time data. In this paper an attempt has been
made to study the modeling of censored survival data and the results are compared with other models. Log Likelihood
ratio statistic and Cox-Snell residuals are used for the comparisons. The EE model performs better than Exponential
and Weibull models. We also fitted Log-logistic model and compared with other models based on Baysian information
criterion (BIC) and an information criterion (AIC). The Log-logistic model also performs better than the above models in

situations when the censoring is at low level.
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Introduction

The analysis of survival data provides a useful way of
expressing the experience of a group of patients in the
form of survivor function and hazard rate. The hazard rate
measures the instantaneous probability of dying at a
given time, conditional on patient having survival thus far
(Collett, 1994). Any model which attempts to represent
realistically the patient’s survival experience may be
judged for its suitability by the closeness of the theoretical
survival function derived under the model to the survival
function derived empirically from the data.

Models fitted to survival data may involve parametric
or non-parametric forms for the hazard function. This
depends on whether this form is defined (up to a small
number of unknown parameters) as that of a known
model, or whether it is completely undefined. This paper
considered both parametric and non-parametric methods.

The EE model is very similar in shape to the Weibull
model but found to be more suitable for the analysis of
survival data. EE model has been applied to real data and
empirical comparisons are presented for modeling
survival data.

Exponentiated Exponential Model (EEM)

The two parameter model, EEM is defined as a
particular case of Gompertz-Verhulst distribution function
(Ahuja & Nash, 1967). The EEM has been discussed by
(Gupta & Kundu, 1999). The cumulative distribution
function of EEM (Gupta & Kundu, 1999, 2000, 2001 and
2003) is defined by

o
FEE(t, a x) =(1 _e” “j ‘o, b, t50 1)

and density function is defined by

-1
fEE(t,a,/t)=ax(t—e‘“)“ e o, A, t>0, (2)

Where a and A are respectively shape and scale
parameters. If a = 1, it results in the exponential family
Research article

©Indian Society for Education and Environment (iSee)

“Exponentiated exponential model”
http://www.indjst.org

and it also represents the Gamma and Weibull model
(Gupta & Kundu, 2001). For large values of &, the model
converges to a symmetric form. The EE density function
varies significantly depending of the shape parameter
with A =1 (Fig.1).

Fig. 1. Density function of the EE model: A =1
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Survival function is

Seelt a.2) =P(T>t) =1—(1—e‘“)u; a, 2, t>0, 3)
the pth percentile of the survival distribution is defined
(Collett, 1994) as follows

OEE [1&)} @
ie.,
tEE(p) =%In ;l : (5)
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the hazard function

o-1
oA (1—e_ Mj e"Lt

o
1—(1—e‘“j

and cumulative hazard is

h

to,h)= ‘a, % t >0 (6)
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where a and A are respectively shape and scale
parameters of the models and the comparison of the
three different hazard functions are given in Table 1.

(13)

Methods and materials
Maximum Likelihood Estimation
When we observe the survival data, it might include
censored survival times. For this

observed survival data, parametric

models can be fitted by the method of
maximum likelihood. We consider, the

observed survival times of “n”
individuals, that there are uncensored

then, the probability density function of
the random variable (T) associated
with survival time is fr (tf) and the
likelihood of the observations t,ts,...,t, IS

Hee (6o 2)= —logS®t);, a &t > 0. (7)
Table 1. Hazard functions for various models
MODELS
Parameter ["Exponential Weibull EE Log-logistic
Starts at A"*and then
a=1 Constant Constant Constant declines monotonically
a>1 Constant Increasing Increasing Increases to a peak at
fromOtooco | from OtoA t=(a-pa e
and then declines
a<1 Constant Decreasing | Decreasing Starts at infinity
from == to0 | from ocoto A and then declines

defined by (Collett, 1994; Lawless,
2003; Aitkin, 1980; Clayton, 1983)

It is unimodal density function and for fixed scale
parameter as the shape parameter increases, it is
becoming more and more symmetric. For any A, the
hazard function is non-decreasing function if a>1, and it is
a non-increasing function if a<1. For a=1, it is constant
(Fig.2).

The notations in this paper defined by (Lee & Wang,
2003; Lawless, 2003)
Exponential Model (EM)

fe(t)=2e Mint> 0, ®)

using (4) the pth percentile of the EM of survival
distribution is

1 ( 100
tE(p):;In [100-pj' ©)
Weibull Model (WM)
(04
fyy (t) = ax(xt)“‘le'(’“) Lo,k t >0, (10)

using (4) the pth percentile of the WM of survival
distribution is

1
1{ (100 )|«
t =—<lIn| —— , 11
wlp) A{n(loo-p)} (1)
Log-logistic Model (LLM)
ae @ -1
fiL )= — . nt >0 (12)
+ a @

using (4) the pth percentile of the LLM of survival
distribution is
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n
fr(t)= Hlf(ti ). (14)

1=
We now consider where the survival data has censored
survival time’s r out of n individuals have the event at
times ty,ty,..,t; and the remaining (n-r) individuals t;"ty ,....to.r
are right-censored. The overall likelihood function of the r
events can be written as

r
fro =11 fry (1)

If we know that the life time of an individual is at least
t (survival time is censored) and the probability of this
event is P(Tzt*), which is Srg(t*). Therefore, the overall
likelihood function of the n individuals defined by

r n-r *
L= ] f (t.)HS (t )
J-:1T(U) ihZ, TOUI
Conveniently, the n pairs of observations for i™ individual
is (t,0;i=1,2,..., n), where 81 is an indicator variable

{1
5. =
i 0

The total likelihood function can be written in the following

way
” ore
I -
igl{fT(U)(tij} S W) T
The above likelihood function (17) is equivalent to
equation (16) (Collett, 1994; Lawless, 2003; Miller, 1981).
This can be maximized with respect to the unknown
parameters in to the probability density function and
survival function.

(19)

(16)

if uncensored
if censored

L =

(17)
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We now consider, single sample survival times of n
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Fig.2. Hazard functions of the EE model: A =1

individuals with t ,t_,...,t are assuming EEM. Then
12 n HAZARD FUNCTION
the data of the given actual death times of r individual and T Yamos
the remaining (n-r) survival times are right censored. As a -1 AN
special case fitting of the two parameter EEM (2) was B =2E \\\
used in expression (17). The log likelihood function can e T —— e R
be written as _ ///” L
= =5
n n -
LL = Elai In{fro (&) ]+ ; 1-3,)In {ST(C) (ti)} (18) . L,_//I | |
To estimate the value of A and a for which the LL ‘
function is maximum, differentiating with respect to A and
a, we have
t — ht; (1 —Mlju_l
e - €
dLL n tie~ Mi n i
Soo = X8| o—tit(a-D) e e T (-38)) . (19)
i—1 (1—e—“| ) i—1 [1_(1_e—kti )“}
-ag ) - At
dLL n ! n (1 - e ) In (1 - e )
—— = 3 8i|:—+ln(lfe7)‘ti )}z (-38i) . (20)
a i1 La i—1 [1_(144“ )“}
Since the data contain r deaths, Z;6=r and the remaining
are right censored, Zj(1-8)= n-r then the above log
likelihood function (19) and (20) rewritten as
-ty RN -1
dLL r . tie " : e e (l_e )
= —+ (a -1 - t: — «a , (21)
da o )zl (1-e ) 21 : ;1 [1-(1—e‘“l)a}
rep ) - ht
dLL r z’ | (1 7»‘) "Z’(le j In(lfe j
= — + n - e ) - , 22
da a T=1 T=1 |:1_(1767Xt| )a :| ( )
-t AR 1
r . t e M4 . nor Up€ (l—e )
—+ (a 1) ! - t a = 0, (23)
A ( 21 (1— 7“') R |2::1 {l (l e—xq)“}
( -t ) ¢ ( -t )
r n-r 1 - e In 1 - e
e “i)— - 0. (24)
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Fig. 3(A). Plot for the fitted Survivor functions of Exponential, Fig. .3(8)' F.>|Ot for the fitted Survivor functions of .
Weibull, EE and LL models and Kaplan-Meier for IUD data Exponential Weibull, EE. and LL models and Kaplan-Meier
for multiple myeloma data
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Fig.3(C). Plot for the fitted Survivor function of Exponential, Fig. 3(D). Plot for the fitted hazard functions of Exponential,
Weibull, EE and LL models and Kaplan-Meier for spinal TB data. Weibull, EE and LL models for IUD data
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Fig. 3(E). Plot for the fitted hazard functions of Exponential, Fig. 3(F). Plot for the fitted hazard functions of Exponential,
Weibull, EE and LL models for multiple myeloma data Weibull, EE and LL models for spinal TB data
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Fig.3(G).Cox-Snell residual plot for the fitted
Exponential, Weibull, EE and LL models for IUD data
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Fig. 3(H). Cox-Snell residual plot for the fitted Exponential,
Weibull,EE and LL models for multiple myeloma data.
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Fig. 3(1). Cox-Snell residual plot for the fitted Exponential,
Weibull, EE and LL models for spinal TB data.
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Here ty,t5,..,t (j = 1,2,..,r) and t*,t*,...t,-* (I = 1,2,..,n-r)
are respectively uncensored and censored survival times
of n individuals. Equating the derivative of equation (21)
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and (22) to zero, we get (23) and (24).

This is the non-linear equation in A and a which can
only be solved using numerical methods, such as the
Newton-Raphson method.

Databases

We have considered three survival data sets for the
empirical comparisons and this section gives a brief
description of the data sets.

IUD and pregnancy data (Collett, 1994)

Data consist of 18 women, all of whom were aged
between 18 and 35 years and who had experienced two
previous pregnancies. In this problem, the time origin
corresponds to the first day in which a woman uses the
intrauterine device (IlUD) and the end-point is
discontinuation because of bleeding problems. Some
women in the study ceased using the 1UD because of the
desire for pregnhancy, or because they had no further
need for a contraceptive, while others were simply lost to
follow -up. Out of 18, 9 (50%) observations were
censored. The survival times were in weeks.

Multiple myeloma data (Collett, 1994)

The data relate to 48 patients with multiple myeloma,
all of whom were aged between 50 and 80 years. Out of
these patients, 12 (25%) had not died by the time that the
study was completed, and so these individuals contribute
right-censored survival times. The survival times were
recorded in months.

Spinal tuberculosis Data (ICMR/MRC, 1989)

This data relates to 108 patients. A sub group of 304
patients admitted to a clinical trial with a diagnosis of
tuberculosis involving thoracic or lumbar spine allocated
to one of the three treatment series. Out of the 108
patients response time considered, 17 (16%) response
times were censored. The response times were recorded
in months.

Results and discussion

The parameter estimates for the Exponential,
Weibull, Exponentiated Exponential and Log-logistic are
given in Table 2 along the 2.5" and 97.5" percentiles.
The SAS package has been used to fit the models
(Appendix A gives the programme code for EEM).

From Table 2 we observe that the deviance of the
exponential is slightly higher than the EE and Weibull
models; however the difference is not significant. Further
all the three models give similar median survival time.
However the percentiles vary considerably. As the
percentage of censoring decreases, the EEM gives a
narrow confidence interval than the other two models. For
the spinal tuberculosis data the EEM gave a shorter 95%
interval than WM and EM. The Cox-Snell residuals
method also indicates that EEM is better than Weibull and
Exponential.

The estimated survivor and hazard functions of
Exponential, Weibull, EE and LL models along with
Kaplan-Meier are shown in Tables 3(A)- 3(C) and
graphical representations of the survival function, hazard
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Table 2. Parameter estimates for the models for the three data sets.

Parameters & Percentiles
Methods A a -2LL
Models 2.5th Median 97.5th BIC AIC
EM 0.0086 - 103.60 2.94 80.60 428.94 -53.25 -53.80
IUD Data WM 0.01014 1.676 100.70 11.00 79.25 214.88 -53.24 -54.35
EEM 0.015661 1.9956 101.08 10.94 78.29 279.26 -53.43 -54.54
LLM | 0.00021026 | 1.93610842 101.74 11.95 79.30 526.12 -53.76 -54.87
EM 0.0320855 - 319.64 0.79 21.60 114.97 | -161.76 -161.82
Multiple
myeloma data | WM 0.0360394 0.9674923 319.56 0.62 19.00 106.95 | -163.65 -163.78
EEM 0.031702 0.9851 319.62 0.75 21.54 115.89 | -163.68 -163.81
LLM | 0.01958215 1.348059 319.74 1.22 18.50 280.14 | -163.74 -163.87
EM 0.0325232 - 805.50 0.78 21.31 113.42 | -405.09 -404.75
Spinal TB Data | WM 0.03208 1.1005 804.28 1.10 22.34 102.07 | -406.82 -406.14
EEM 0.04019 1.334 801.68 1.62 22.48 98.88 -405.52 -404.84
LLM | 0.00785436 | 1.646090535 790.68 2.05 19.00 175.91 | -400.02 -399.34
function and Cox-Snell residuals are presented in Fig. unknown shape and scale parameters of life time for

3(A) - 3(1).

The results of fitting of the LLM for the three data
bases are presented in Table 2. Based on -2LL statistics,
BIC and AIC (Lee & Wang, 2003) we observed that LLM
is providing a better fit than the other models for the
spinal TB data when the censoring is low. In high
censoring situation all models perform in the same level.

censored data. Using the maximum likelihood and SAS,
the shape and scale parameters has been estimated.
Three data bases to illustrate the application of this
model are presented. It is observed that the EEM seems
to be more appropriate for the spinal TB data when
compared to an Exponential and Weibull models. The
performance of EEM improves considerably in low
censored situation.The LLM is found to provide a better fit

Table 3(A). Estimated Survivor and hazard functions of EM, WM, EEM, LLM and Kaplan-Meier for IUD data

Sulrvival Survival Function Hazard Function
M TS0 _EM | 50w S(t)_EEM] S(t)_LLM] §(t)_KM h(t) _EM | A(t)_EEM h(t)_WM| h(t)_LLM
0- 1.00000 1.00000 1.00000 1.00000 1.0000 0.00860 0.00000 0.00000 0.00000
10- 0.91759 0.97865 0.97881 0.98217 0.9444 0.00860 0.00399 0.00362 0.00345
19- 0.84925 0.93867 0.93336 0.94083 0.8815 0.00860 0.00644 0.00558 0.00603
30- 0.77260 0.87278 0.85885 0.86785 0.8137 0.00860 0.00856 0.00760 0.00853
36- 0.73374 0.83135 0.81359 0.82187 0.7459 0.00860 0.00946 0.00860 0.00958
59- 0.60206 0.65525 0.63549 0.63937 0.6526 0.00860 0.01180 0.01201 0.01183
75- 0.52466 0.53152 0.52167 0.52698 0.5594 0.00860 0.01281 0.01412 0.01221
93- 0.44942 0.40400 0.41111 0.42350 0.4662 0.00860 0.01360 0.01633 0.01200
97- 0.43422 0.37809 0.38923 0.40372 0.3729 0.00860 0.01374 0.01681 0.01190
107 0.39844 0.31775 0.33871 0.35895 0.2486 0.00860 0.01405 0.01796 0.01160

Conclusions for spinal TB data when compared to other models in the

Gupta and Kundu (2003) discussed and found that,
the EEM is better fit than the other models based on the
some methods applied for complete life time data sets. In
this paper we consider a special case of EEM with
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low censoring situation. Further studies are needed to
validate this conclusion under different censoring
patterns.
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Table 3(B). Estimated Survivor and hazard functions of EM, WM, EEM, LLM and Kaplan-Meier for multiple myeloma data.

Survival Survival Function Hazard Function
tme 1 Sty _EM | S(t) _ Wi S(t) _EEM| S(t) _LLM| S(t)_KM R(t)_EM | A(t)_EEM h(t)_WM| A(t)_LLM
0- 1.00000 | 1.00000 | 1.00000 1.00000 1.0000 0.03209 0.00000 0.00000 0.00000
1- 0.96842 | 0.96064 | 0.96714 0.98079 0.9375 0.03209 0.03294 0.03885 0.02589
4- 0.87955 | 0.85768 | 0.87707 0.88739 0.8949 0.03209 0.03238 0.03713 0.03795
5- 0.85178 | 0.82653 | 0.84916 0.85365 0.8097 0.03209 0.0323 0.03687 0.03946
6- 0.82488 0.7967 0.8222 0.82021 0.7670 0.03209 0.03223 0.03665 0.04040
8- 0.77361 | 0.74066 | 0.77094 0.75583 0.7451 0.03209 0.03214 0.03631 0.04115
10- 0.72553 | 0.68897 | 0.72299 0.69617 0.6575 0.03209 0.03208 0.03604 0.04096
12- 0.68043 0.6412 0.6781 0.64183 0.6340 0.03209 0.03203 0.03583 0.04024
13- 0.65895 | 0.61866 | 0.65673 0.61667 0.6096 0.03209 0.032 0.03574 0.03975
14- 0.63814 | 0.59696 | 0.63605 0.59279 0.5852 0.03209 0.03199 0.03565 0.03921
15- 0.61799 | 0.57608 | 0.61604 0.57017 0.5608 0.03209 0.03197 0.03557 0.03863
16- 0.59848 | 0.55597 | 0.59666 0.54873 0.5098 0.03209 0.03195 0.0355 0.03802
17- 0.57958 0.5366 0.5779 0.52842 0.4844 0.03209 0.03194 0.03543 0.03740
18- 0.56128 | 0.51794 | 0.55974 0.50919 0.4334 0.03209 0.03193 0.03536 0.03676
23- 0.47809 | 0.43432 | 0.47722 0.42710 0.4045 0.03209 0.03187 0.03508 0.03358
24- 0.46299 | 0.41936 | 0.46225 0.41312 0.3756 0.03209 0.03187 0.03503 0.03296
36- 0.31503 | 0.27624 0.3155 0.28953 0.3467 0.03209 0.0318 0.03457 0.02660
40- 0.27709 | 0.24062 | 0.27782 0.26121 0.2889 0.03209 0.03178 0.03446 0.02490
50- 0.20104 | 0.17071 | 0.20221 0.20743 0.2568 0.03209 0.03176 0.03421 0.02137
51- 0.19469 | 0.16497 | 0.19589 0.20307 0.2247 0.03209 0.03176 0.03418 0.02106
65- 0.12424 | 0.10242 0.1256 0.15523 0.1798 0.03209 0.03173 0.03392 0.01752
66- 0.12031 | 0.09901 | 0.12168 0.15255 0.1348 0.03209 0.03173 0.0339 0.01731
88- 0.0594 0.04714 | 0.06055 0.10885 0.0674 0.03209 0.03172 0.03358 0.01365
91 0.05395 | 0.04262 | 0.05505 0.10454 0.0625 0.03209 0.03172 0.03355 0.01327
Table 3(C). Estimated Survivor and hazard functions of EM, WM, EEM, LLM and Kaplan-Meier for spinal TB data
0- 1.00000 | 1.00000 | 1.00000 1.00000 1.0000 0.03252 0.00000 0.00000 0.00000
3- 0.90704 | 0.92676 | 0.94507 0.95427 0.9630 0.03252 0.02432 0.0279 0.02509
6- 0.82272 0.8495 0.87192 0.86958 0.8333 0.03252 0.02888 0.02992 0.03578
9- 0.74624 | 0.77505 | 0.79619 0.77379 0.6852 0.03252 0.03149 0.03116 0.04137
12- 0.67687 | 0.70487 0.7224 0.68055 0.5926 0.03252 0.03324 0.03207 0.04382
15- 0.61395 | 0.63948 | 0.65253 0.59604 0.5000 0.03252 0.03451 0.0328 0.04433
18- 0.55687 | 0.57901 | 0.58748 0.52220 0.4167 0.03252 0.03547 0.03341 0.04369
24- 0.45815 | 0.47239 0.4728 0.40500 0.3796 0.03252 0.03682 0.03439 0.04081
27- 0.41556 | 0.42582 | 0.42304 0.35926 0.3704 0.03252 0.03731 0.0348 0.03906
30- 0.37693 | 0.38339 0.378 0.32039 0.3241 0.03252 0.03772 0.03517 0.03729
35- 0.32036 | 0.32112 0.3126 0.26781 0.3148 0.03252 0.03825 0.03572 0.03444
36- 0.31011 | 0.30984 | 0.30085 0.25882 0.2870 0.03252 0.03834 0.03582 0.03389
42- 0.25513 | 0.24949 | 0.23869 0.21318 0.2583 0.03252 0.03879 0.03638 0.03084
48- 0.2099 0.20026 | 0.18893 0.17863 0.2105 0.03252 0.03912 0.03687 0.02817
54- 0.17269 | 0.16031 | 0.14929 0.15193 0.1914 0.03252 0.03937 0.03731 0.02585
60 0.14208 0.128 0.11782 0.13091 0.1531 0.03252 0.03955 0.03771 0.02384
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Appendix A

a and A for EE model using (3.10) and (3.11) we written the SAS
programme.

data pv3;

input t s $20.;

datalines;

(Enter the values of survival time t and status s);
run;

proc print data = pv3;

run;

proc freq data=pv3;

table s/out=sfreq;

run;

data _null_;

set sfreq;

if s="censored" then do;

call symputx(“"cen",count);
end;

if s="uncensord" then do;
call symputx("uncen”,count);
end;

run;

proc sort data=pv3;
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run;
proc transpose data=pv3 (where=(s="uncensord"))
out=pv3unc prefix=UNC;

run;

proc transpose data=pv3 (where=(s="censored")) out=pv3c
prefix=C;

run;

data pv33;

merge pv3unc pv3c;

by name_;

array unc{&uncen}unc:; /*equa-part--->1*/

array cen{&cen} c:; [*equa-part--->1*/

array Icen{&cen}; [*equa-part--->1*/

array lunc{&uncen}; /*equa-part--->1*/

array loglcen{&cen};

array loglunc{&uncen};

array logunc{&uncen};

do i= (specify the range);

do j= (specify the range);

LSCEN=0;

scen=0;

sunc=0;

Isunc=0;

logs=0;

do k=1 to &cen;
Icen{k}=((((1-exp(-i*cen{k}))**(j-1))*cen{k}*exp(-i*cen{k}))/(1-
(1-exp(-i*cen{k})*))); /*equal-partd*/
loglcen{k}=((((1-exp(-i*cen{k}))**j)*log(1-exp(-i*cen{k})))/(1-
(1-exp(-i*cen{k}))**)); *equa2-part3*/
scen=scen+lcen{k};

Iscen=Iscen+loglcen{k};

end;

do I=1 to &uncen,;

lunc{l}=unc{l}; [*equal-part3*/
loglunc{l}=((unc{l}*exp(-i*unc{l}))/(1-exp(-i*unc{l}))); /*equal-
part2*/

logunc{l}=log(1-exp(-i*unc{l})); /*equa2-part2*/
sunc=sunc+lunc{l};

Isunc=Isunc+loglunc{l};

logs=logs+logunc{l};

end;

res=(&uncen./i) +((j-1)*Isunc)-sunc-(j*scen);/*---> eqn 1*/
resl=(&uncen./j)+ logs - Iscen ; [*---> eqn 2*/

if round(res,1.1111) = 0 or round(res1,1.11) = 0 then do;
abs=res;

absl=resl,

output;

end;

end;

end;

run;

proc sort data=pv33 out=pv33_e1l;

by res;

run;

proc sort data=pv33 out=pv33_e2;

by resl;

run;
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