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Signal  recognition  particle  (SRP)  mediates  targeting  of proteins  to  appropriate  cellular  compartments,
which  is  an  important  process  in  all  living  organisms.  In prokaryotes,  SRP  consists  of  Ffh,  a protein,
and  4.5S  RNA  that  recognizes  signal  peptide  emerging  from  ribosomes.  The  SRP  (Ffh)  of  one  the  most
successful  intracellular  pathogen,  Mycobacterium  tuberculosis,  has been  investigated  with  respect  to  bio-
chemical  properties.  In  the present  study,  Ffh  of M.  tuberculosis  was  overexpressed  and  was  confirmed
ignal recognition particle
fh
.5S RNA
.  tuberculosis

to  be  a GTPase  using  thin  layer  chromatography  and  malachite  green  assay.  The  GTP  binding  ability  was
confirmed  by  GTP  overlay  assay.  The  4.5S  RNA  sequence  of  M.  tuberculosis  was  synthesized  by  in vitro
transcription  assay.  The  interaction  between  Ffh  and  4.5S  RNA  was  confirmed  by overlay  assay  and  RNA
gel shift  assay.  The  results  show  that  the  biochemical  properties  of  M.  tuberculosis  Ffh have  been  con-
served,  and  this  is  the  first report  that  shows  the  interaction  of  components  of  SRP  in M. tuberculosis,

.5S  RN
namely  Ffh  protein  and  4

ntroduction

Mycobacterium tuberculosis, the causative agent of tuberculosis,
s one of the most successful intracellular pathogen, killing mil-
ions of people annually (WHO  2009). In M.  tuberculosis, protein
xport mechanism is important for the vital physiologic processes
nd virulence (Feltcher et al. 2010). In bacteria, most of the pro-
eins are exported to cytoplasmic membrane via two pathways,
eneral secretory pathway or signal recognition particle (SRP) path-
ay (Fekkes and Driessen 1999; Herskovits et al. 2000; Luirink et al.

005). The general secretory pathway is a post translational target-
ng machinery used by a variety of exported proteins, whereas the
RP functions cotranslationally to target subsets of proteins whose
nal destination is the cytoplasmic membrane (Macfarlane and
uller 1995; Valent et al. 1995; Ulbrandt et al. 1997). The com-

onents of prokaryotic SRP were initially identified by sequence
omparison with well characterized eukaryotic SRP (Romisch et al.
989; Bernstein et al. 1989), a ribonucleo protein complex con-
isting of one 7S RNA molecule as the central core to which six

roteins of different sizes (9–72 kDa) were attached (Walter and
lobel 1982). While the prokaryotic SRP pathway is much simpler
han eukaryotic counterpart consisting of two proteins, Ffh and FtsY
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and a 4.5S RNA molecule, all are essential for Escherichia coli viabil-
ity (Brown and Fournier 1984; Gill and Salmond 1990; Phillips and
Silhavy 1992).

Ffh is the bacterial homologue of SRP54, the eukaryotic 54-kDa
protein that binds to the signal sequence of preprotein, hence the
name Ffh (fifty-four homologue). One of the key functions of SRP,
is the recognition of signal sequence of a nascent polypeptide as it
emerges from the ribosome (Zopf et al. 1990). Based on the primary
sequence, Ffh can be divided into three domains: the methionine-
rich M domain interacts with signal peptide and 4.5S RNA (Romisch
et al. 1990). The G domain has the GTPase activity required for its
interaction with the docking protein and the subsequent release
of the nascent peptide at the translocon (Samuelsson et al. 1995).
Finally, the highly conserved N domain at amino terminus plays a
role in the control of the GTP occupancy of the G domain (Freymann
et al. 1999). The SRP receptor consists of a conserved docking-
protein, FtsY in bacteria, is a homologue of Ffh and has G and N
domains. Both require GTPase activity to form a heterodimer at the
membrane and target the preproteins to the membrane (Kusters
et al. 1995; Samuelsson et al. 1995).

SRP dependent protein targeting can take place in ribosomes
containing short nascent peptides that emerge from ribosomes. The
preprotein having hydrophobic amino terminal signal sequence is
recognized by the Ffh – 4.5S RNA to form RNC (ribosome-nascent
chain) complex (Miller et al. 1994; Luirink et al. 2005). Once the

RNC binds to the signal sequence, the complex is targeted to the
membrane associated SRP docking protein or receptor, FtsY. At the
membrane, SRP is released from the preprotein in a GTP-dependent
manner.

dx.doi.org/10.1016/j.micres.2012.03.002
http://www.sciencedirect.com/science/journal/09445013
http://www.elsevier.de/micres
mailto:sujatha.sujatha36@gmail.com
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The components of SRP have not been reported in M. tuberculosis
hich is having complex cell wall structure and a slow grower. In

his study, we are reporting the characterization of SRP components
fh and 4.5S RNA of M.  tuberculosis for the first time.

aterials and methods

acterial strains and growth conditions

The strains and plasmids used in this study are listed in Table 2.
acterial strains DH5� (Invitrogen) and XL1-Blue (Stratagene)
ere used for cloning and TOP 10 (Invitrogen) for the cloning

nd expression of recombinant proteins. E. coli cells were grown
nd maintained in Luria–Bertani (LB) medium supplemented with
mpicillin 50 �g/ml with constant shaking at 37 ◦C. M. tuberculosis
37Rv strain was grown in Middlebrook 7H9 broth supplemented
ith 10% albumin–dextrose–catalase (ADC) and 0.5% glycerol at

7 ◦C with constant shaking at 150 rpm for 4–6 weeks. LB-agar and
H10 agar containing 10% oleic acid–albumin–dextrose–catalase
OADC) and 0.5% glycerol were used for E. coli and M.  tuberculosis
37Rv, respectively.

lasmids and DNA manipulations

Standard genetic and molecular biology techniques were used
or construction of strains and plasmids (Sambrook et al. 1989).
olymerase chain reaction (PCR) oligonucleotide primers were
esigned (Table 1) to amplify full-length ffh gene from whole-
enomic DNA of M.  tuberculosis H37Rv. Each PCR primer set having
nique restriction enzyme sites (BglII in 5′- and EcoRI in 3′) were
esigned to clone into expression vector pBAD b (Invitrogen). PCR-
mplified full-length ffh gene digested with Bgl II and Eco RI and
nserted inframe with N terminal His tag into similarly digested
BAD b to yield pBAF6.

Hypothetical M.  tuberculosis 4.5S RNA gene (ffs gene) sequence
as identified from Signal Recognition Particle DataBase (SRPDB)

nd primers were designed to amplify ffs gene. The amplified 143 bp
roduct was cloned into TOPO TA (Invitrogen) cloning vector and
he resulting construct was named pT4.5sc. Restriction site over-
angs were created in 4.5S RNA gene by digestion with BamHI and
hoI and the released product was cloned into pBluescript SK+
ector to yield pSBS4 construct. This was used as a template for
n vitro transcription (IVT) to produce 4.5S RNA. All constructs were
equenced to confirm the fidelity of the sequence.

xpression and purification of Ffh

E. coli TOP10 cells harboring pBAF6 construct were grown in
B medium supplemented with ampicillin 50 �g/ml at 30 ◦C with
haking (200 rpm) until A600 reached 0.6. l-Arabinose was added
o a concentration of 0.2% (w/v) and growth was  continued for
dditional 3 h at 30 ◦C. Growth was arrested by keeping the cells
n ice for 15 min  and pelleted down by centrifugation at 6000 × g
or 10 min  and stored at −80 ◦C. Pellets were thawed on ice and
esuspended in cell lysis buffer A (50 mM Tris–Cl pH 8.0, 300 mM
aCl, 10 mM imidazole, 20% glycerol, and 0.5 mM phenyl methyl

ulfonyl fluoride) and lyzed by sonication. The cell lysates were
entrifuged 15,000 × g for 15 min  at 4 ◦C. The supernatant contain-
ng recombinant protein was collected and incubated with ProBond
ickel affinity resin (Invitrogen)-packed column pre-equilibrated
ith buffer A. After extensive washings with buffer A containing
0 mM  imidazole the recombinant Ffh was eluted with 200 mM
midazole. Fractions were run on 10% SDS-PAGE and analyzed by
oomassie brilliant blue staining and western blotting using anti
isG antibodies. Pure fractions were dialyzed (25 mM Tris–Cl pH
 Research 167 (2012) 520– 525 521

8.0, 150 mM NaCl, 5 mM imidazole, 10% glycerol, 0.5 mM PMSF),
aliquoted and stored at −80 ◦C.

GTP blot overlay assay

[�-32P] GTP-binding assay on polyvinylidene difluoride (PVDF)
membrane was  performed as described by Lapetina and Reep
(1987) and Rao et al. (1997).  Purified recombinant Ffh protein
along with control protein DacB2 (a recombinant penicillin binding
protein of M.  tuberculosis) was resolved on SDS-PAGE and elec-
trophoretically transferred to PVDF membrane (Millipore, USA).
Transferred blots from SDS-PAGE were rinsed two times for 15 min
with GTP-binding buffer consisting of 50 mM Tris–Cl, pH 7.5, 0.3%
Tween 20, 5 mM MgCl2, 1 mM EGTA, 1 mM DTT and 5 �M ATP.
The blots were then incubated with [�-32P] GTP (BRIT, Hyder-
abad, India) at a concentration of 1 �Ci/ml in binding buffer for
90 min. The blots were then washed extensively for several times
with binding buffer. All these incubations were carried out at room
temperature and finally the blots were air dried and subjected to
autoradiography (24 h at − 80 ◦C).

GTPase assay by thin layer chromatography (TLC)

In this method (Chopra et al. 2003), GTP hydrolysis was  mea-
sured after purified Ffh (1 �g) was  incubated with 1 �Ci of [�-32P]
GTP (BRIT, Hyderabad, India) in 20-�l reaction volume in TMD
buffer (25 mM  Tris–Cl, 10 mM MgCl2, 1 mM DTT, pH 7.4) for differ-
ent time points at 25 ◦C. The reaction was  terminated after addition
of 2 �l of 4% SDS and the aliquots were resolved by polyethylenem-
ine cellulose thin layer chromatography (TLC) using 0.75 M KH2PO4
(pH 4.2). The decrease in the amount of [�-32P] GTP was determined
by increase in the amount of 32Pi release.

Malachite green GTPase assay

Malachite green GTPase assay was performed as per the method
prescribed by Leonard et al. (2005) and Sharma et al. (2006).  The
reaction buffer contained 10 �l of 10× TMD  buffer, 2 �l of 100 mM
GTP. Five microgram of purified Ffh was added to the reaction buffer
and incubated at 37 ◦C. GTP control and protein control (DacB2)
reactions were also performed to identify the specificity of the
experiment. At various time points (0, 5, 10, 20, 40 and 80 min),
15 �l of aliquots were removed and transferred to microtiter plate
wells containing 5 �l of 0.5 M EDTA. When the time course was
completed, 150 �l of the malachite green (1 mM malachite green,
10 mM  ammonium molybdate in 1 N HCl) was added to each well
and the absorbance at 650 nm was  measured. The amounts of
enzymatically released inorganic phosphate in triplicate samples
were measured photometrically by referring a standard curve from
10 to 100 �M Pi was  generated for each experiment and read in
parallel.

In vitro transcription

To prepare wild-type 4.5S RNA, pSBS4 plasmid was linearized
by XbaI. In vitro transcription was  performed using MAXIscript kit
(Ambion Inc., Austin, TX) according to the manufacturer’s instruc-
tions. In brief, the in vitro transcription reaction contained template
DNA 10 �g, 10 mM ATP, 10 mM CTP, 10 mM GTP and 10 �Ci [�-32P]
UTP (BRIT). The reaction was initiated by addition of T7 RNA poly-

merase. After incubation at 37 ◦C for 1 h, the reaction was stopped
and labeled transcripts were purified by NucAway spin Column
(Ambion Inc). The presence of RNA transcripts was confirmed by
8 M urea denaturing gel and �-actin used as a positive control.
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Table  1
Primers used in the study.

Primer name Sequence (5′–3′)a Use

Ffh f CGGAAGATCTTCCGTGTTTGAATCGCTGTCT Cloning Ffh
Ffh  r GAATTCCGCCACTACTTCTTGCCT Cloning Ffh
4.5s  temp1 TCGTCTCCGGGCAAGCTCAG Cloning 4.5S RNA gene
4.5s  temp1c CGAATCCTCCGCAGCATATGG Cloning 4.5S RNA gene
4.5sc  temp 2 GCGTTCCAGCCCAGGTATTAGAC Cloning 4.5S RNA gene
4.5sc  temp2c ACCGAGGTCCAGTCAGTGCC Cloning 4.5S RNA gene

a Bold letters indicate bases comprising the restriction sites BglII (AGATCT) and EcoRI (GAATTC).

Table 2
Strains and plasmids.

Strain or plasmid Description Reference/source

DH5� E. coli strain used for propagation of plasmids Invitrogen
TOP  10 E. coli strain used for cloning and recombinant protein purification Invitrogen
XL1-Blue E.  coli strain used for pBluescript phagemids propagation Stratagene
TOPO TA Cloning vector used to clone PCR products Invitrogen
pBAD b E. coli vector used to generate His-tagged recombinant proteins contains araBAD promoter Invitrogen
pBluescript SK+ Phagemid used for in vitro transcription. Stratagene
pBAF6 pBAD vector used to purify recombinant Histidine tagged Ffh protein In this study
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bands corresponding to this region have not been highlighted
(Supplementary material S.2). Moreover, the protein has been
tagged with N-terminal His tag and since the western blot also
shows triplets, it clearly indicates that some form of proteolysis

Fig. 1. (A) Expression and purification of M.  tuberculosis Ffh. SDS-PAGE and
Coomassie blue stained gel analysis of l-arabinose-induced E. coli TOP10 cells crude
lysate harboring Ffh construct (lane 1) and Ni-NTA affinity chromatography-purified
pT4.5st TOPO TA vector contains 4.5S RNA gene us
pT4.5sc TOPO TA vector contains 4.5S RNA gene su
pSBS4  pBlue script vector contains 4.5S RNA gene

.5S RNA blot overlay assay

4.5S RNA blot overlay assay (Boyle and Holmes 1986) was per-
ormed to identify interaction between 4.5S RNA and Ffh protein
imilar to GTP blot overlay assay with little modifications. Trans-
erred blots from SDS-PAGE were washed two times with binding
uffer containing 50 mM  Tris–Cl, pH 7.5, 0.3% Tween 20, 5 mM
gCl2, 1 mM EDTA, 1 mM DTT, 10 �g yeast t-RNA and 20 units of

NA guard (Amersham Pharmacia). The blots were then incubated
ith 2 �l of purified in vitro transcription reaction product con-

aining [�-32P] UTP-labeled 4.5S RNA. After 90 min  of incubation,
he blots were then washed extensively with binding buffer and
utoradiography was performed. [�-32P] UTP-labeled �-actin was
sed as a control to know the specificity of binding of 4.5S RNA.

NA gel shift assay

RNA gel shift assays to examine binding of 4.5S RNA with Ffh
ere done as previously described (Bradshaw and Walter 2007).

�-32P] UTP labeled-4.5S RNA was allowed to bind with 2 �g of
urified Ffh protein of M.  tuberculosis in a reaction mixture (20 �l)
ontaining 10 mM Tris–Cl, pH 8.0, 50 mM KCl, 10% glycerol, and

 �g yeast tRNA. The reaction mixture was incubated at room
emperature for 30 min. The mixture was separated in TAE buffer
40 mM  Tris–acetate, 20 mM sodium acetate, and 1 mM EDTA) sup-
lemented with 2.5 mM  magnesium acetate on a 6% non denaturing
olyacrylamide gel.

esults and discussion

ver expression and purification of Ffh

M.  tuberculosis Rv2916c encodes for ffh,  the gene product which
as 525 amino acids long protein and a calculated molecular mass
f 54.9 kDa and an estimated pI of 8.47. The predicted Ffh sequence
as PCR amplified from M.  tuberculosis H37Rv genomic DNA
sing sequence-specific primers containing restriction enzyme

verhangs. The full-length Ffh was cloned into in pBAD b expres-
ion vector in frame with N-terminal His tag and induced with
-arabinose. pBAD expression vector has araBAD promoter that
rovides tight, dose-dependent regulation of heterologous gene
 sub cloning In this study
ing In this study

In this study

expression (Guzman et al. 1995). Attempts to purify the full-length
Ffh protein from E. coli TOP10 cells harboring pBAF6 were tried with
varying concentration of l-arabinose (0.1–1%) and different induc-
tion temperatures (16–37 ◦C). We  found that E. coli TOP10 cells
with pBAF6 induced with 0.2% l-arabinose at 30 ◦C for 3 h yielded
full-length Ffh at an approximate size of 54 kDa from soluble frac-
tions. SDS-PAGE and western blot analysis of purified fractions
of Ffh showed triplet bands (Fig. 1A and B). In order to deter-
mine the nature of the protein, individual bands from triplet band
were gel extracted separately and subjected to mass spectrome-
try analysis. The results clearly indicated that all three bands were
Ffh protein and ruled out contaminating protein (Supplementary
material S.1). Also, the protein has been degraded at the
C-terminal region as the peptides of lower molecular weight
fractions of recombinant Ffh (lanes 2–5 indicate different elutions of recombinant
Ffh. Maximum yield was observed in elution 3). Molecular weight markers were
indicated in kDa. (B) Western blot analysis of crude E. coli lysate harboring Ffh con-
struct probed with Anti-His antibodies (lane 1). Molecular weight markers were
indicated in kDa.
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Fig. 2. (A) GTP-binding assay of recombinant Ffh. Recombinant Ffh was  separated by SDS-PAGE and transferred to PVDF membrane and GTP overlay assay performed using
[�-32P] GTP. Lane 1, Ffh; lane 2, control protein (DacB2); lane 3, molecular weight marker (bands in kDa from top to bottom: 207, 114, 78, 54, 35, 28); lane 4, Ffh; lane
5,  DacB2 (lanes 3–5 Coomassie blue stained gel). (B) GTP hydrolysis by Ffh. [�-32P] GTP hydrolysis and release of Pi by recombinant Ffh was determined using thin layer
chromatography. Lane 1, [�-32P] GTP alone; lanes 2, 3, and 4, [�-32P] GTP incubated with Ffh aliquoted after 5, 15, and 30 min, respectively. Lanes 5, 6, and 7 were buffer
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ontrol  aliquoted after 5, 15, and 30 min, respectively. (C) Time course of GTP hydr
ime  points. The Pi release was  assayed when GTP was  hydrolyzed by Ffh. Recombin
rom  three independent experiments.

as occurred specifically at the C-terminal. It is not clear by what
rocess this proteolysis occurs or if it is physiologically signifi-
ant. Although, it is important to mention that a similar proteolysis
as reported in Ffh of Neisseria gonorrhoea where the recombinant

xpressed Ffh protein appeared as doublets (Frasz and Arvidson
003).

TP binding and GTPase activity of purified Ffh

GTP binding with Ffh is required for initial steps of cotransla-
ional targeting reaction and GTP hydrolysis to cause release of SRP
rom its receptor (Connolly et al. 1991). We  proved GTP binding
o Ffh by GTP blot overlay assay using [�-32P] GTP. This assay has
een used previously to analyze GTP-binding proteins from vari-
us samples and the technique relies on the ability of the protein
o bind GTP ligand following separation by SDS-PAGE and blotting
o nitrocellulose membrane (Lapetina and Reep 1987; Huber et al.
994; Rao et al. 1997). Fig. 2A illustrates the purified Ffh show-
ng its affinity to [�-32P] GTP after separated by SDS-PAGE and
ransferred to PVDF membrane. The specificity of the GTP binding
ith Ffh was tested by preincubating the membrane with unlabeled
TP with 0.2–2.0 �M concentration, while incubation with 2.0 �M

ig. 3. (A) In vitro transcription of 4.5S RNA. In vitro transcription and [�-32P] UTP labeling
,  �-actin as control. (B) Ffh and 4.5S RNA interaction. The interaction between Ffh and 4.5
NA.  Lane 1, E. coli (TOP 10) cells whole lysate; lane 2, purified Ffh; lane 3, E. coli (TOP 10
C)  RNA gel shift analysis of 4.5S RNA by Ffh. Assays were performed as described in Mat
NA  along with control (�-actin). Lane 1, labeled 4.5S RNA; lane 2, addition of Ffh with l
xcess  compared to labeled probe); lane 4, [�-32P] UTP-labeled �-actin; lane 5, addition o
 by Ffh. The release of Pi was measured, using malachite green method, at various
cB2 used as a protein control. Each time point is the average of the values obtained

concentration of unlabeled GTP completely inhibited the binding
of labeled GTP (data not shown).

GTP hydrolysis activity of Ffh and release of Pi was deter-
mined by TLC and malachite green assay. In TLC, we observed that
within 5 min  incubation with Ffh showed maximum GTPases activ-
ity (Fig. 2B). The buffer control did not show any hydrolysis of GTP.
More than 95% GTP was  hydrolyzed after 30 min  of incubation with
purified Ffh. The purified Ffh showed a GTPase activity of 0.25 �M of
phosphate min−1 �g−1 protein as determined by malachite green
assay (Fig. 2C). This datum clearly indicates the GTPase activity of
recombinant Ffh protein of M. tuberculosis.

Cloning and expression of M. tuberculosis 4.5S RNA

The SRP Database website (http://rnp.uthct.edu/rnp/SRPDB/
srprna.html) includes 4.5S RNA sequence of M. tuberculosis (from
CDC 1551 sequence) in alignment of SRP RNAs (Rosenblad et al.
2003). This sequence was BLASTed with M.  tuberculosis whole-

genome sequence (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and we
identified the region which codes for 4.5S RNA (ffs gene). This
sequence was used to design oligonuleotide primers for amplifi-
cation and cloning of M. tuberculosis H37Rv ffs gene (Table 1). One

 of 4.5S RNA using T7 RNA polymerase (MAXIscript, Ambion). Lane 1, 4.5S RNA; lane
S RNA was analyzed by 4.5S RNA Blot over lay assay using [�-32P] UTP labeled 4.5S

) cells whole lysate; lane 4, purified Ffh (lanes 3 and 4 Coomassie blue stained gel).
erials and methods. The experiment was performed with [�-32P] UTP-labeled 4.5S
abeled 4.5S RNA; lane 3, addition of unlabeled 4.5S RNA as a competitor (100-fold
f Ffh with labeled �-actin.

http://rnp.uthct.edu/rnp/SRPDB/srprna.html
http://rnp.uthct.edu/rnp/SRPDB/srprna.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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lone, pSBS4, was selected and used as a template for IVT to pro-
uce 4.5S RNA. The [�-32P] UTP-labeled 4.5S RNA was identified by
utoradiography and showed 143 nt size and �-actin was  used as

 positive control (Fig. 3A). The 4.5S RNA prepared in this method
as purified and used in the 4.5S RNA blot overlay assay and gel

hift assay to study the interaction with Ffh.

fh and 4.5S RNA interaction

Direct interaction between Ffh and 4.5S RNA of M. tuberculosis
as been demonstrated by 4.5S RNA blot overlay assay and RNA gel
hift assay. In RNA blot overlay assay, [�-32P] UTP-labeled 4.5S RNA
as used to determine the interaction with Ffh. Intriguingly, this

ssay also showed three bands indicating that it is also binding to
he cleavage products (Fig. 3B). Since 4.5S RNA can bind to the NG
omains of Ffh, it is possible that even after losing a considerable
ortion of M domain the RNA may  bind to the NG domain giving
he triplet bands. To show the specificity of the experiments [�-32P]
TP-labeled �-actin was over laid on the membrane and it clearly

howed no bands on the membrane detected by autoradiogra-
hy. Interaction between Ffh and 4.5S RNA has been demonstrated

n other prokaryotes by biochemical methods (Poritz et al. 1990;
heng and Gierasch 1998; Frasz and Arvidson 2003) as well as in
rystal structure studies (Batey et al. 2000). Here we  are reporting
or the first time M.  tuberculosis SRP homologue Ffh and its inter-
ction with 4.5S RNA. This proves the evolutionary conservation
mong prokaryotes (Gribaldo and Cammarano 1998).

To further confirm the interactions, we performed RNA gel shift
ssay. This experiment is based on the observation that the migra-
ion of nucleic acids through polyacrylamide gels can be altered
hen proteins are bound to it (Carey 1991). The migration is

ffected by the shape of the nucleic acid, as well as charge to mass
atio of the proteins bound to the nucleic acid. Column purified
�-32P] UTP-labeled 4.5S RNA was incubated with different con-
entrations of purified Ffh. A representative of autoradiography of
uch an experiment is shown in Fig. 3C. We  found that 25 pmole of
fh was sufficient to retard the mobility of 1.5 pmole of 4.5S RNA.
he specificity of the binding was demonstrated by incubation of
fh with [�-32P] UTP-labeled �-actin where there was no change in
he mobility of �-actin (Fig. 3C). In our experiment, the free probe
nd shifted band did not appear as single band and it always forms
mear in autoradiography. Since it is not possible in our assay to
etermine stoichiometry of the components of the complex, we
ave demonstrated the protein–RNA interaction. The specificity of
he binding was confirmed by cold chase experiments where 100-
old excess unlabeled 4.5S RNA was added and the shifted labeled
and had disappeared.

We  present the evidence that SRP system exists in M. tuberculosis
nd in vitro experiments demonstrated that Ffh has GTPase activity
nd interacts with 4.5S RNA. This also confirms that biochemical
roperties are also evolutionary conserved in M.  tuberculosis. Fur-
her work is needed to identify the target proteins transported via
RP pathway will provide further insights into protein secretion
nd transport mechanism of M.  tuberculosis.
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