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ABSTRACT Survival analysis has become standard tools for modeling cancer trial data when the event of interest is the 
“time to event”. In survival analysis, the proportional hazard model was introduced by Cox (1972) in order 

to estimate the effects of different covariates influencing the time-to-event data. This model has been used extensively in 
time to event of cancer trial data. It is known that the Bayesian analysis has the advantage in dealing with small sample of 
censored data over frequentist methods. Frailty models in survival analysis deal with the unobserved heterogeneity among 
subjects. The objective of this article is to present a Bayesian analysis for survival models with frailty and is being compared 
with a frequentist method of proportional hazards model. Gibbs sampling technique is used to assess the posterior quanti-
ties of interest and to avoid the complexity in calculations. The posterior is arrived using WinBUGS package. An illustrative 
analysis is done within the context of survival time to death of breast cancer data. 

INTRODUCTION
Survival analysis technique to cancer trial data is valid when 
the endpoint of interest is “the time to the occurrence of a 
particular event”. With modern computing technology, the 
analysis of “time to-event” data has become inexpensive in 
terms of time. The proportional hazards model, which simply 
regresses the logarithm of the survival time over the covari-
ates, has been utilized in the analysis of censored survival 
data in cancer trial.  In many cancer trials, the applications of 
proportional hazards model is often a more realistic model 
than the other survival models in the analysis of time to event 
data.  

To describe the distribution of survival time has assumed that 
the hazard function is completely specified given the base-
line hazard function and the values of the covariates. In can-
cer studies, there may be factors other than the measured 
covariates that significantly affect the distribution of survival 
time. This condition is often referred to as heterogeneity of 
the subjects. Among the early papers of Vaupel, Manton and 
Stallard (1979) who used the concept of frailty to describe 
the differences in survival time apparently among similar 
individuals. Hougaard (1995) presented an overview of the 
models, proposed for the use in time to event data. Aalen 
(1994) also provides a relatively non-technical summary with 
a focus on fully parametric models. Klein and Moeschberger 
(1997) presented methods based on incorporating frailty in 
proportional hazards models and its technical details. 

The basic idea of a frailty model is to incorporate an unmeas-
ured “random” effect in the hazard function to account for 
heterogeneity in the subjects. This random effect for the 

thi
cluster iν  is incorporated conditionally into the proportional 
hazard function previously examined:

( ) ( ) ( )ijii xthth bνν exp0=         [1]

which may be re-expressed as 

( ) ( ) ( )iiji xthth ηbν += exp0 ,     [2]

showing νι, actually behaves as an unknown covariate for the 
thi cluster in the model. Using the relationship between the 

survival and hazard function, it has the conditional survival 
function as 
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and the conditional likelihood as
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where there are i clusters, thi one being of size iη and g 
and b represent baseline hazard and regression parameters, 
respectively. On substitution it gives
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The marginal (i.e. independent of ni,) likelihood, L(g,b), is ob-
tained through integration of the random effect distribution. 
A common assumption for the random effect to follow a 
Gamma distribution is mean “1” and variance “t”. 
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The marginal likelihood is then obtained as

Since the hazard cannot be negative, distributions must 
have positive values. These technical issues have led to the 
use of the gamma distribution. In particular, the most fre-
quently used model assumes that the frailties represent a 
sample from a gamma distribution with mean equal to one 
and variance parameter “t”. If the value of the frailty is less 
than one, the subject is less frail than an average subject. 
Aalen (1994) pointed out that there are advantages in us-
ing a fully parametric model, such as the Weibull regression 
model, with a frailty.  The frailty model has been extended 
by Yashin et al. (1995). The parameter vector “t” is then ex-
tended to include the random effects ),...,2,1(, nii =ν  for each 
class from which the data is given and overall variance of the 
logarithm of random effects iν . The data is in the form of  

),...,2,1;,...,2,1( nimjDij ==  where  m is the number of observations 
in clusters i. The variance of the frailty estimates is drawn at 
an each iteration using a Gibbs step assuming with full condi-
tional for the dispersion, since it is assumed that 0))(log( =iE ν
. In the Bayesian point of view, the random frailty models es-
timate the unknown frailties under the assumption of a priori 
exchangeability.  In addition, the frailty variance “t”, would 
be expressed as a hyperparameter and prior knowledge con-
cerning its value which will be summarized in a hyper prior 
distribution. 

MCMC ALGORITHM
The most commonly used algorithm in MCMC applications 
are of two types and they are Metropolis Algorithm and 
Gibbs sampler. Geman and Geman (1984) presented the 
Gibbs sampler in context of spatial processes involving large 
number of variables like image reconstructions. They consid-
er under which situations the conditional distributions given 
neighbourhood subsets of the variables, which they uniquely 
determines the joint distribution. The basic contribution in 
framework of iterative Monte Carlo algorithms were per-
formed by Tanner and Wang(1987). Further developments in 
the fields are listed here the data augmentation by Gelfand 
and Smith (1990).  The Metropolis-Hastings algorithm was 
developed by Metropolis, et al., (1953) and consequently 
generalized by Hastings (1970). A broad theoretical descrip-
tion of Metropolis-Hastings was given by (Tierney, 1994; Chib 
and Greenberg, 1995) provide outstanding discussions.

Using Metropolis Algorithm to construct a Markov chain with 
equilibrium distribution ( )xπ  for discrete case, Let { }ijqQ = be 
specified symmetric transition matrix and draw state js from 
ith  of row of Q .  With known probability ijα  move from the 
state is  to the state js , otherwise, remain at step is . The 
construction defines a Markov chain with transition matrix 

jiqp ijijij ≠= α  and ∑ ≠
−=

ij ijij pp 1 . Metropolis et al (1953)

provided as given below, 

GIBBS SAMPLER ALGORITHM
The Gibbs sampler technique is one of the best known 
MCMC sampling algorithms in the Bayesian computational 
methods. The Gibbs sampler by Grenander (1983), the pre-
scribed term is introduced by Geman and Geman (1984). 
Gibbs sampling is the landmark in problem of Bayesian infer-
ence (Gelfand and Smith, 1991). The Gibbs sampler tutorial 
is provided by Casella and George (1992). 

Let ( )'p,...,, θθθθ 21=  be a p-dimensional vector of parameters 

and let ( )D|θπ  be its posterior distribution given the data D. 
Then, the fundamental format of the Gibbs sampler is given 
as 

Step 1. Select an arbitrary starting point 

( ) 0002010 == isetand,...,, '
,p,, θθθθ

Step 2.  Generate ( )'i,pi,i,i ,...,, 112111 ++++ = θθθθ
Generate ( );D,,...,|~ i,pi,i, θθθπθ 2111 +

Generate ( );D,,...,,|~ i,pi,i,i, θθθθπθ 311212 ++

… … … 

Generate ( );D,,...,,|~ i,pi,i,pi,p 1112111 +−+++ θθθθπθ

Step 3. Set 1+= ii , and go to step 2

Each component of θ is in the natural order and a cycle in this 
scheme requires generation of p random variates. Gelfand 
and Smith (1990) show that under certain regularity condi-
tions, the vector sequence 







 = ,...,i,i 21θ

has a stationary distribution ( )D|θπ . The performance of a 
Metropolis-Hastings algorithm depends on the choice of a 
proposal density q. The Metropolis-Hastings algorithm can 
be used within the Gibbs sampler when direct sampling from 
the full conditional posterior is difficult. 

PRIOR
Prior elicitation perhaps plays the most crucial role in Bayes-
ian inference.  Survival analysis with covariates, the most pop-
ular choice of informative prior for b is the normal prior, and 
the most common choice of non informative prior for b is the 
uniform prior. The non-informative and improper priors may 
be useful and easier to specify for certain problems, but they 
cannot be used in all applications, such as model selection 
or model comparison, as it is well known that proper priors 
are required to compute Bayes factors and posterior model 
probabilities (Ibrahim, et al., 2004). Also non informative pri-
ors may cause instability in the posterior estimates and lead 
to convergence problems for the Gibbs sampler. Moreover, 
non informative prior do not make use of real prior informa-
tion that one may use for a specific application.   

APPLICATION                                                                                                                                          
We consider the database consisting of 368 breast cancer 
women patients diagnosed at Cancer Institute (WIA), Chen-
nai, India and follow-up period up to 180 months. The event 
of interest was time to death. Overall 187(51%) cases have 
experienced the event and 63% of 130 are of stage 3B cases. 

The demographic and disease characteristics of the pa-
tients are given in table 1 

Table 1: Classification of death according to  Stages and 
Age group

Stages Age groups

Status
Stage2B
N (%)

Sta-
ge3A
N (%)

Stage3B
N (%)

Age <50 
years
N (%)

Age ³ 50 
years
N (%)

Alive 
Dead

61 (55)
49 (45)

72 (56)
56 (44)

48 (37)
82 (63)

115 (53)
103 (47)

66 (44)
84 (56)

Total 110 128 130 218 150

From the table1, we see that death increases with the sever-
ity of stages and age. The event experienced cases among 
age group in more than 50 years is higher than the less than 
50 years (Pari Dayal et al., 2013). The linear predictor is set 
equal to the intercept in the reference group (stage = 3); this 
defines the baseline hazard. The corresponding distribution 
of survival time is Gamma distribution (Cox and Oakes, 1984).  

The Cox model with a frailty parameter for each individual is 
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using for identifying the risk variables for breast cancer pa-
tients. Here, the age and stages are considered as risk vari-
ables. We analyzed the data assuming a Weibull distribution 
for the survivor function, and including random effect (bi) for 
each patient. The hazard model is as follows

1,...,368  i    )ì Weibull(r,~   t i i =

 
ii3stage3i2stage2i1stage1iagei b STAGE  STAGE  STAGE   AGE     log +++++= bbbbαµ

) Normal(0,~   bi t
where AGEi is a continuous covariate, and stage is a 3-level 
categorical covariate (stage2B = 1(as reference), stage 3A = 
2 and stage 3B = 3) 1,2,3) (k  STAGEik = are dummy variables 
representing the 3-level factor for underlying stage. The re-
gression coefficients and the precision of the random effects 
t  are given as ``non-informative’’ priors, namely 

0.0001) Normal(0,  ~  bi

0.0001) 01,Gamma(0.00 ~ t
The prior for the shape parameter of the survival distribution 
r is given as

0.0001) Gamma(1, ~r 

which is slowly decreasing on the positive real line.

In this analysis, we have used the BUGS program Spiegel-
halter et al., (2003). This program performs based on the as-
sumptions of Gibbs sampler by simulating from the full con-
ditional distributions. The Bayesian estimators were obtained 
through the implementation of the Gibbs sampling scheme. 
It was executed 50,000 iterations of the algorithm and de-
scribed the first 1000 iterations as a burn-in. The chains are 
used to check its convergence of the Gibbs sampler as rec-
ommended by the Spiegelhalter et al., (2004).  Hence, con-
vergence has been achieved, every 10,000 observations and 
are taken from each chain after the burn-in period.  The sum-
mary (Table2) is showing posterior mean, median and stand-
ard deviation with a 95% posterior credible interval along 
with MC error, as well as the number of iterations as sample 
at the final after the burn-in period 

The posterior distribution is provided using the density op-
tion in the Sample Monitor Tool which draws a kernel density 
estimate of the posterior distribution for a chosen parameter, 
as in Figure 1. There are various additional options for dis-
playing the posterior distribution. They are quantiles, trace 
and history etc., like the survival curves. 

Table 2: WinBUGS output for the Breast Cancer data: Posterior Statistics

Node Mean SD MC error 2.5% Median 97.5% Start Sample

Alpha -6.61800 0.36360 0.02555 -7.34900 -6.61300 -5.87600 1001 10000

beta.age 0.00608 0.00562 0.00030 -0.00524 0.00617 0.01675 1001 10000

beta.stage[2] -0.06237 0.13370 0.00281 -0.32160 -0.06157 0.20020 1001 10000

beta.stage[3] 0.29290 0.13400 0.00308 0.03794 0.29110 0.56030 1001 10000

r 1.41400 0.05834 0.00381 1.29800 1.41400 1.52400 1001 10000

sigma 0.09608 0.04432 0.00408 0.02968 0.08937 0.19030 1001 10000

alpha -6.62100 0.39690 0.02247 -7.43000 -6.61400 -5.86000 1001 20000

beta.age 0.00599 0.00573 0.00025 -0.00526 0.00595 0.01719 1001 20000

beta.stage[2] -0.06236 0.13330 0.00175 -0.32130 -0.06207 0.20050 1001 20000

beta.stage[3] 0.29160 0.13380 0.00196 0.03577 0.29090 0.55700 1001 20000

r 1.41600 0.06222 0.00306 1.29600 1.41400 1.54300 1001 20000

sigma 0.08726 0.04589 0.00348 0.02510 0.07726 0.19410 1001 20000

alpha -6.60900 0.40460 0.01605 -7.41200 -6.61000 -5.81500 1001 50000

beta.age 0.00578 0.00588 0.00018 -0.00584 0.00586 0.01717 1001 50000

beta.stage[2] -0.06144 0.13270 0.00112 -0.31910 -0.06175 0.20030 1001 50000

beta.stage[3] 0.29180 0.13310 0.00129 0.03320 0.29190 0.55410 1001 50000

r 1.41500 0.06098 0.00208 1.29800 1.41300 1.53700 1001 50000

sigma 0.08788 0.04727 0.00268 0.02509 0.07813 0.20210 1001 50000

Table2 presents the posterior statistics for 50000 iterations 
in three spell of every 10000 with different nodes. The risk of 
the stage2 (3A) and stage3 (3B) are compared with the stage1 
(2A) like exp(-0.06144) = 0.9404 and exp(0.29180)=1.3388 
respectively. WinBUGS also implements the Deviance In-
formation Criterion (DIC) (Spiegelhalter et al., 2002 & 2003) 
for model comparison criterion. This is a convenient infor-

mation criterion measure that trades off goodness-of-fit 
against the complexity of a model.  The DIC is computed as 

 P 2  D  P   D  DIC DD +=+= ˆ . The Lowest value of the criterion 
indicates the better fitting models. D (Dbar) is the posterior 
mean of -2LL (log likelihood); D̂  (Dhat) is the -2LogLikelihood 
at posterior mean of stochastic nodes. 
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Table3: WinBUGS output for the Breast Cancer data De-
viance Information Criterion (DIC) 

Dbar Dhat pD DIC

Sample of 10,000 Iterations

beta.stage 11.04800 11.04800 0.00000 11.04800

t 871.42000 862.09000 9.2700 880.75000

total 882.47000 873.14000 9.2700 891.80000

Sample of 20,000 Iterations

beta.stage 11.04800 11.04800 0.00000 11.04800

t 871.81000 863.11000 8.70200 880.51000

total 882.86000 874.15000 8.70200 891.56000

Sample of 50,000 Iterations

beta.stage 11.04800 11.04800 0.00000 11.04800

t 871.91000 863.6800 8.22400 880.10000

total 882.96000 874.7000 8.22400 891.18000

The DIC values for stage are illustrated in Table3 with differ-
ent stages of iterations like 10000, 20000 and 50000 respec-
tively. There are marginal changes in each stage of iterations. 
The lesser the DIC value will be considered as the better 
model. Since we have a simple model for this non-informa-
tive censored data, it is not required for model comparison. 
However, there is no reasonable change in the DIC values 
after 50000 iterations and in fact, it is increasing marginally.   

There are some visual approximate estimates as confirmative 
measures such as posterior density or probability function, 
“trace” plots, posterior percentiles, quantiles etc. The fig-
ure1 demonstrates all types of visual approximate estimates. 
The first stage of the graphs is kernel density. The evolution 
for the median and the 2.5% and 97.5%percentiles for each 
iteration of the algorithm are obtained by using this quantiles 
plot, is in the second stage of the graph. The “trace” and 
“history” plots provide an on-line plot of the generated value 
as in the third and fourth stages of the figure1. The trace 
plot shows the full history of the samples for any parameter 
for which we have previously set a samples monitor and car-
ried out the updates: The “trace” and history are related in 
several aspects. These plots are called “trace of beetles”.  In 
figure1, the chains for which convergence looks reasonable 
and the chains which have clearly reached convergence.

Discussion
Bayesian frailty model proposed to fit flexible survival mod-
els for non-informative censored breast cancer data. Using 
WinBUGS software, we presented the comparable results as 
compared with the results of the seminal paper (Pari Dayal et 
al. 2013) with using the DIC value and the other supportive 
measures. The results which are presented in this paper fol-
lowed the same trend and in fact it showed the reality. The 
prior for the nonparametric part in the Cox form of frailty 
model is taken place immensely. This method is easy to im-
plement and allows a flexible class of survival models and it 
is also being seen as a simple alternative to the maximum 
likelihood method. WinBUGS is a tool for analyzing survival 
data in a Bayesian framework using MCMC. The results of the 

statistical analysis in all the tables and all visual approximate 
estimates which are presented in this paper are consistent. 
The DIC  is an appropriate tool in the BUGS software pack-
age.

However, an enormous statistical knowledge is required for 
it to be used correctly. This approach provides an alterna-
tive validation that could be used to confirm results of ‘fre-
quentist’ approach. Bayesian inference has a number of 
advantages over the frequentist approaches, mostly in the 
flexibility of model-building for time to event survival data. 
In addition, for many models, ‘frequentist’ inference can be 
obtained as a special case of Bayesian inference with the use 
of non-informative priors (Ibrahim et al., 2001). The Bayesian 
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approach enables us to formulate accurate inference based 
on the posterior distribution for any sample size, whereas the 
‘frequentist’ approach relies heavily on the large sample ap-
proximation. The most important concern is that there is a 
risk involved in the erroneous usage of the Bayesian methods 
which could lead to improper data analysis

REFERENCE 1. Aalen O. O. (1994). Effects of frailty in Survival Analysis. Statistical Methods in Medical Research, 3, 227-43. | 2. Casella, G., and George, 
E.I. (1992). Explaining the Gibbs sampler. The American Statistician, 46, 167-74. | 3. Chib, S. and Greenberg, E. (1995), “Understanding the 

Metropolis-Hastings Algorithm,” American Statistician, 49, 327–335. | 4. Clayton. D.(1991). A Monte Carlo for Bayesian inference in frailty models. Biometrics, 47, 
467– 485. | 5. Cox, D.R. (1972). Regression model and life tables (with discussion). Journal of the Royal Statistical Society(B), 34, 187–220. | 6. Cox, D.R and Oakes, 
D. (1984), Analysis of Survival Data. London Chapman and Hall. | 7. Gelfand, A.E., and Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal 
densities. Journal of the Americal Statistical Association, 85, 398-409. | 8. Gelfand, A.E., and Smith, A.F.M. (1991). Gibbs sampling for marginal posterior expectations, 
Communications in Statistics, A, 20, 1747-66. | 9. Geman, S and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. 
IEEE Transactions on pattern analysis and Matching Intelligence, 6, 721-41. | 10. Grenander, U. (1983). Tutorial in pattern theorey. Technical Report. Providence, R.I: 
Division of Applied Mathematics, Brown University. | 11. Hastings, W.K. (1970). Monte Carlo methods using Markov Chains and their applications. Biometrika, 57, 
97-109. | 12. Ibrahim, G. J., Chen, M-H., and Sinha, D. (2001). Bayesian Survival Analysis. New York, Springer. | 13. Ibrahim, G. J., Chen, M-H., and Sinha, D. (2004). 
Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials. Statistica Sinica, 14, 863-83. | 14. Metropolis, N., 
Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-91. 
| 15. Pari Dayal L, Leo Alexander T, Ponnuraja C, and Venkatesan P. Modelling of breast cancer survival data: A frailty model approach. Indian Journal of Applied 
Research, 2013, 3(10), 22-24 | 16. Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002), “Bayesian Measures of Model Complexity and Fit,” 
Journal of the Royal Statistical Society, Series B, 64(4), 583–616, with discussion. | 17. Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches 
to clinical trials and health-care evaluation (Vol. 13). Wiley. com. | 18. Spiegelhalter, D.J, Thomas A, Best N, and Lunn D, (2003), WinBUGS User Manual, Version 1.4, 
MRC Biostatistics Unit, Institute of Public Health and Department of Epidemiology and Public Health, Imperial College School of Medicine, UK, 2003, available at: 
http://www.mrc-bsu.cam.ac.uk/bugs | 19. Tanner, M. A., and Wang, W . H (1987). The calculations of the posterior distributions by data augmentation, Journal of 
the American Statistical Association, 82, 528-40. | 20. Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions,” Annals of Statistics, 22, 1701–1762. 
| 21. Yashin, A. I., Vaupel, J. W. and Iachine, I.A. (1995). Correlated individual frailty: an advantageous approach to survival analysis of bivariate data, Mathematical 
Population Studeis, 5, 145-159. | 22. Yin, G. and Ibrahim, G.J. (2005). A class of Bayesian shared gamma frailty models with multivariate failure time data. Biometrics, 
61,208-16. | 


