
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262910929

Modeling of Parametric Bayesian Cure Rate Survival for Pulmonary

Tuberculosis Data Analysis

Article · June 2014

CITATIONS

0
READS

225

2 authors:

Some of the authors of this publication are also working on these related projects:

Machine Learning Approaches for Biological Data mining View project

Bayesian Modeling View project

Narayanasamy Sundaram

Presidency College

12 PUBLICATIONS   11 CITATIONS   

SEE PROFILE

Perumal Venkatesan

Sri Ramachandra University

222 PUBLICATIONS   3,466 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Narayanasamy Sundaram on 06 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/262910929_Modeling_of_Parametric_Bayesian_Cure_Rate_Survival_for_Pulmonary_Tuberculosis_Data_Analysis?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/262910929_Modeling_of_Parametric_Bayesian_Cure_Rate_Survival_for_Pulmonary_Tuberculosis_Data_Analysis?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Machine-Learning-Approaches-for-Biological-Data-mining?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Bayesian-Modeling-4?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narayanasamy-Sundaram?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narayanasamy-Sundaram?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Presidency-College?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narayanasamy-Sundaram?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Perumal-Venkatesan?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Perumal-Venkatesan?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sri-Ramachandra-University?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Perumal-Venkatesan?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Narayanasamy-Sundaram?enrichId=rgreq-f0c87764045ca4a552bc2589c89a81f4-XXX&enrichSource=Y292ZXJQYWdlOzI2MjkxMDkyOTtBUzoxMDUxNDAxNTM0ODczNjBAMTQwMjA3ODc3NDM5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH 35 

Volume : 3 | Issue : 6 | June 2014 • ISSN No 2277 - 8179Research Paper

Statistics

*N.Sundaram Department of Statistics, Dr.Ambedkar Government Arts College 
(Autonomous), Chennai-600 039, Tamilnadu, India. * Corresponding Author

P.Venkatesan Department of Statistics, Tuberculosis Research Centre, ICMR, Chennai 
-600 031, Tamilnadu, India. 

Modeling of Parametric Bayesian Cure 
Rate Survival for Pulmonary Tuberculosis 

Data Analysis

KEYWORDS : Cure fraction, Frailty, 
MCMC, Prior

ABSTRACT The cure fraction refers to the proportion of patients who are cured of disease constituting long-term sur-
vivors. The study of cure fraction gives a useful measure of disease control and provides better predictions of 

long term survival rates to researchers and policy makers. In this article we study the parametric Bayesian cure rate model for right-
censored data for population with a surviving fraction relating to two cases namely with and without frailty. We assume normal prior 
for covariates and Gamma prior for shape parameter. The estimates of the parameters are obtained using the Markov chain Monte 
Carlo (MCMC) technique. A real dataset from a pulmonary tuberculosis clinical trial is used in this research paper. Distributions includ-
ing Exponential, Exponentiated Exponential, Weibull, Log-Logistic, Gamma and Log-Normal have been considered and a comparison 
of the results is presented.

International Journal of Scientific Research
Website: www.theglobaljournals.com (ISSN 2277-8179) 

1 
 

MODELING OF PARAMETRIC BAYESIAN CURE RATE SURVIVAL FOR 
PULMONARY TUBERCULOSIS DATA ANALYSIS

*N.Sundaram1 and P.Venkatesan2

1Department of Statistics, Dr.Ambedkar Government Arts College (Autonomous),
Chennai-600 039, Tamilnadu, India. Mobile No.: 9884983601

2Department of Statistics, Tuberculosis Research Centre, ICMR,
Chennai-600 031, Tamilnadu, India. Mobile No.: 9444057487

1ncsundar77@gmail.com; 2venkaticmr@gmail.com 
Subject to be publish under: Statistics
*correspondence address: New No. 129, Old No. 8, Venkatapuram, Taluk Office 

Road, Saidapet, Chennai - 600 015.

Abstract: The cure fraction refers to the proportion of patients who are cured of disease 
constituting long-term survivors. The study of cure fraction gives a useful measure of disease 
control and provides better predictions of long term survival rates to researchers and policy 
makers. In this article we study the parametric Bayesian cure rate model for right-censored 
data for population with a surviving fraction relating to two cases namely with and without 
frailty. We assume normal prior for covariates and Gamma prior for shape parameter. The 
estimates of the parameters are obtained using the Markov chain Monte Carlo (MCMC) 
technique. A real dataset from a pulmonary tuberculosis clinical trial is used in this research 
paper. Distributions including Exponential, Exponentiated Exponential, Weibull, Log-
Logistic, Gamma and Log-Normal have been considered and a comparison of the results is 
presented.

Keywords: Cure fraction, Frailty, MCMC, Prior.

1. Introduction
Cure rate models which include a

cure fraction in survival models are 
becoming very popular in analyzing data 
from in areas such as health, criminology, 
reliability and economics. In recent years, 
there has been an increasing interest in 
modeling survival data with long term 
survivors. This may arise from clinical 
trials, in which, even after an extended 
follow-up, no further events of interest are 
observed and some of them may be 
considered as cured. Failing to account for 
such cured subjects would lead to incorrect 
inferences and researchers may be 
interested in estimating the cure fraction. 
The first cure rate models developed by 
Boag (1949) were to estimate the 
proportion of patients cured among those 
who were receiving treatment for cancer of 
mouth and throat, cervix, uteri and breast 

and later developed by Berkson and Gage 
(1952). It was called the mixture model 
and also known as the standard cure rate 
model. An alternative mixture model was 
developed by Yakovlev et al., (1993) and 
this model is known as the bounded 
cumulative hazard model. Bayesian 
formulation of cure rate model is given in 
Chen et al., (1999) and discussed by 
Ibrahim et al., (2001). A SAS macro for 
parametric and semi-parametric mixture 
cure models worked by Corbière and Joly 
(2007), Cure fraction model with random 
effects for regional variation in cancer 
survival analyzed by Seppä et al., (2009),
Cure Models for Estimating Hospital-
Based Breast Cancer Survival was 
analyzed by Rama et al., (2010). Zhao et 
al., (2014) had developed Bayesian
random threshold estimation in a Cox 
proportional hazards cure model.  
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The Exponentiated Exponential 
(EE) distribution has been studied 
extensively for complete data set by Gupta 
and Kundu (1999, 2001a, 2001b, 2002, 
2003a, 2003b, 2004) and Kundu and 
Gupta (2008) for both the Bayesian and 
Non-Bayesian methods. Recently 
Sundaram and Venkatesan (2012) have 
studied the two parameters EE distribution
for Bayesian and non Bayesian survival 
model with censored data and the results 
are compared with Exponential (E),
Weibull (W), Log-Logistic (LL), Gamma
(G) and Log-Normal (LN). This research 
paper is focused on the study of cure 
fraction from different distributions both in 
with and without frailty of parametric 
Bayesian cure rate survival model. The 
parametric Bayes estimators, random-
effect (i.e., frailty) and cure fraction are 
estimated using MCMC technique with the 
help of SAS based on the information 
provided by empirical data set.

Cure rate models are consisting of 
a cured (non-susceptible) fraction and an 
uncured (susceptible) fraction. It is 
assumed that the survival function for the 
entire population 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) is a mixture of 
cured and uncured subjects. Hence this 
model is known as a mixture cure rate 
model and can be written as

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)     (1)
where 𝜙𝜙𝜙𝜙 is a proportion of patients cured 
on treatment and 1 − 𝜙𝜙𝜙𝜙 is the proportion 
of patients uncured and with respect to the 
cure rate model we can assume a particular 
distribution for the survival function of the 
cured groups 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) and survival function 
of the uncured groups 𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡). Since those 
who fall into the cured part of the equation 
(1) will never experience the event of 
interest, the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡→∞𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) = 1, and the 
survival distribution function 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) for the 
entire population of patients, this leads to a 
parametric survival model. The popular 
distributions considered are Exponential, 
Exponentiated Exponential, Weibull, Log-
Logistic, Gamma and Log-Normal and it 
becomes,

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙 + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡).         (2)
The probability mixture density function 
corresponding to the above equation (2) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = (1 − 𝜙𝜙𝜙𝜙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)                (3)
and the hazard function of the population
of patients from equations (2) and (3) is 

ℎ(𝑡𝑡𝑡𝑡) =  
(1 − 𝜙𝜙𝜙𝜙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)

𝜙𝜙𝜙𝜙 + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)
.          (4)

The mixture model may be parametric or 
non-parametric depending on whether 
𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡) is specified or not. Suppose there 
are n patients entering to a clinical study. 
Let ti , i=1,2,…,n be the observed survival 
time for the ith patient and let 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 be a 
censoring indicator defined such that

𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 = �1 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
0 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐            



Likelihood for the mixture cure model, 
which was initially introduced by De 
Angelis et al., (1997) is given by

𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 ,𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙) = �{(1 − 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙)}𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1
{𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙 + (1 − 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)}1−𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 .        (5)

Note, the 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙 are estimated by use of a link 
function, usually the log-log, Identity,
Logit or Probit functions (Andersson, 
2007; Lambert et al., 2007).

The rest of this paper is organized 
as follows: The concepts of parametric 
Bayesian cure rate survival model 
explained in section 2. In section 3, the 
parametric Bayesian cure rate survival 
model with frailty concepts are presented. 
A real database is presented in section 4. 
In section 5, results and discussions are 
presented. Finally our summary and 
conclusion of study models are stated in 
section 6.  

2. Parametric Bayesian cure rate 
survival model

The survival function for T, and the 
survival function for the population using 
equation (2), we get

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 (𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃) + (1 − 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃))𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡),
where 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 (𝑡𝑡𝑡𝑡) is standard cure rate model 
with cure rate equal to 𝜙𝜙𝜙𝜙 = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃) and 
survival function for the non-cured 
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The Exponentiated Exponential 
(EE) distribution has been studied 
extensively for complete data set by Gupta 
and Kundu (1999, 2001a, 2001b, 2002, 
2003a, 2003b, 2004) and Kundu and 
Gupta (2008) for both the Bayesian and 
Non-Bayesian methods. Recently 
Sundaram and Venkatesan (2012) have 
studied the two parameters EE distribution
for Bayesian and non Bayesian survival 
model with censored data and the results 
are compared with Exponential (E),
Weibull (W), Log-Logistic (LL), Gamma
(G) and Log-Normal (LN). This research 
paper is focused on the study of cure 
fraction from different distributions both in 
with and without frailty of parametric 
Bayesian cure rate survival model. The 
parametric Bayes estimators, random-
effect (i.e., frailty) and cure fraction are 
estimated using MCMC technique with the 
help of SAS based on the information 
provided by empirical data set.

Cure rate models are consisting of 
a cured (non-susceptible) fraction and an 
uncured (susceptible) fraction. It is 
assumed that the survival function for the 
entire population 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) is a mixture of 
cured and uncured subjects. Hence this 
model is known as a mixture cure rate 
model and can be written as

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)     (1)
where 𝜙𝜙𝜙𝜙 is a proportion of patients cured 
on treatment and 1 − 𝜙𝜙𝜙𝜙 is the proportion 
of patients uncured and with respect to the 
cure rate model we can assume a particular 
distribution for the survival function of the 
cured groups 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) and survival function 
of the uncured groups 𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡). Since those 
who fall into the cured part of the equation 
(1) will never experience the event of 
interest, the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡→∞𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡) = 1, and the 
survival distribution function 𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) for the 
entire population of patients, this leads to a 
parametric survival model. The popular 
distributions considered are Exponential, 
Exponentiated Exponential, Weibull, Log-
Logistic, Gamma and Log-Normal and it 
becomes,

𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = 𝜙𝜙𝜙𝜙 + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡).         (2)
The probability mixture density function 
corresponding to the above equation (2) is 

𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡) = (1 − 𝜙𝜙𝜙𝜙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)                (3)
and the hazard function of the population
of patients from equations (2) and (3) is 

ℎ(𝑡𝑡𝑡𝑡) =  
(1 − 𝜙𝜙𝜙𝜙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)

𝜙𝜙𝜙𝜙 + (1 − 𝜙𝜙𝜙𝜙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)
.          (4)

The mixture model may be parametric or 
non-parametric depending on whether 
𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡) is specified or not. Suppose there 
are n patients entering to a clinical study. 
Let ti , i=1,2,…,n be the observed survival 
time for the ith patient and let 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 be a 
censoring indicator defined such that

𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 = �1 𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙  𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
0 𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑐𝑐𝑐𝑐            



Likelihood for the mixture cure model, 
which was initially introduced by De 
Angelis et al., (1997) is given by

𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 ,𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙) = �{(1 − 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙)𝑓𝑓𝑓𝑓𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙)}𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1
{𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙 + (1 − 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙)𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡)}1−𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 .        (5)

Note, the 𝜙𝜙𝜙𝜙𝑙𝑙𝑙𝑙 are estimated by use of a link 
function, usually the log-log, Identity,
Logit or Probit functions (Andersson, 
2007; Lambert et al., 2007).

The rest of this paper is organized 
as follows: The concepts of parametric 
Bayesian cure rate survival model 
explained in section 2. In section 3, the 
parametric Bayesian cure rate survival 
model with frailty concepts are presented. 
A real database is presented in section 4. 
In section 5, results and discussions are 
presented. Finally our summary and 
conclusion of study models are stated in 
section 6.  

2. Parametric Bayesian cure rate 
survival model

The survival function for T, and the 
survival function for the population using 
equation (2), we get

𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 (𝑡𝑡𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃) + (1 − 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃))𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡),
where 𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝 (𝑡𝑡𝑡𝑡) is standard cure rate model 
with cure rate equal to 𝜙𝜙𝜙𝜙 = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃) and 
survival function for the non-cured 
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population is 𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 (𝑡𝑡𝑡𝑡). If the covariates 
depend on 𝜃𝜃𝜃𝜃 through the relationship
𝜃𝜃𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝑒𝑒𝑒𝑒 ′𝛽𝛽𝛽𝛽), where x is a p x 1 vector of 
regression coefficients for the cured and 
non-cured group. For the cured group, the 
sign of regression coefficients affects the 
cure fraction. Thus a negative regression 
coefficient leads to a larger cure fraction, 
when the corresponding covariate takes a 
positive value. For the non-cured group, 
the regression coefficients affect the 
hazard function. Specifically, a negative 
regression coefficient leads to a larger 
hazard, whereas a positive regression 
coefficient leads to a smaller hazard, when 
the corresponding covariate takes a 
positive value.

Let 𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 denote the survival time for 
subject i,which may be right censored, and 
let 𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙 denote the censoring indicator, 
which equals 1 if 𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙 is a failure time and 0
if it is right censored. The observed data 
are given by 𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡, 𝛿𝛿𝛿𝛿),
where 𝑡𝑡𝑡𝑡 =  (𝑡𝑡𝑡𝑡1, 𝑡𝑡𝑡𝑡2, … , 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐)′, and 𝛿𝛿𝛿𝛿 =
 (𝛿𝛿𝛿𝛿1, 𝛿𝛿𝛿𝛿2, … , 𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐)′. Also, let 𝑁𝑁𝑁𝑁 =
 (𝑁𝑁𝑁𝑁1,𝑁𝑁𝑁𝑁2, … ,𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐)′. The complete data are 
given by D = (n, t, δ, N), where N is an 
unobserved vector of latent variables. The 
complete data likelihood function of the 
parameters (𝜓𝜓𝜓𝜓,𝜃𝜃𝜃𝜃) can then be written as

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃,𝜓𝜓𝜓𝜓 𝐷𝐷𝐷𝐷⁄ )  =  ��𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙|𝜓𝜓𝜓𝜓)𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙−𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙|𝜓𝜓𝜓𝜓)𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1

� x

𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 ��(𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙(𝜃𝜃𝜃𝜃) − 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 !)) − 𝑐𝑐𝑐𝑐𝜃𝜃𝜃𝜃
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1

� . (6)

Let 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′ = (𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙1, … , 𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝 ) denote the 
p x 1 vector of covariates for the ith

subject, and let 𝛽𝛽𝛽𝛽 = �𝛽𝛽𝛽𝛽1, … ,𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�
′
denote the 

corresponding vector of regression 
coefficients and θ to the covariates by 
𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙 ≡ 𝜃𝜃𝜃𝜃�𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′𝛽𝛽𝛽𝛽� = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝�𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′𝛽𝛽𝛽𝛽�, so that the cure 
rate for subject i is 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙) =
𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 �−𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝�𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′𝛽𝛽𝛽𝛽�� , 𝑙𝑙𝑙𝑙 = 1,2, … ,𝑐𝑐𝑐𝑐. This 
relationship between 𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙 and 𝛽𝛽𝛽𝛽 is 
equivalent to a canonical link for 𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙 in the 
setting of generalized linear models. In this 
context we can write the complete data 
likelihood of (𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓) as

𝐿𝐿𝐿𝐿(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓 𝐷𝐷𝐷𝐷⁄ )  =  ��𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙|𝜓𝜓𝜓𝜓)𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙−𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙|𝜓𝜓𝜓𝜓)𝛿𝛿𝛿𝛿𝑙𝑙𝑙𝑙
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1

� x

𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝 ���𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′𝛽𝛽𝛽𝛽 − 𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 !)� − 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙′𝛽𝛽𝛽𝛽))
𝑐𝑐𝑐𝑐

𝑙𝑙𝑙𝑙=1

� .   (7)

If we assume independent priors for 
(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓), then the posterior distributions of 
(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓) are also independent. The above 
complete data likelihood equation (7) 
involving β looks like a Poisson 
generalized linear model with a canonical 
link, with the Ni’s being the observables. 
We consider the joint non-informative 
prior 𝜙𝜙𝜙𝜙(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓) ∝ 𝜙𝜙𝜙𝜙(𝜓𝜓𝜓𝜓) where 𝜓𝜓𝜓𝜓 =  (𝛼𝛼𝛼𝛼, 𝜆𝜆𝜆𝜆)′

are the Weibull parameters in 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡|𝜓𝜓𝜓𝜓). This 
non-informative prior implies that 𝛽𝛽𝛽𝛽 and ѱ
are independent a priori and 𝜙𝜙𝜙𝜙(𝛽𝛽𝛽𝛽) ∝ 1 is a 
uniform improper prior. We assume that 

𝜙𝜙𝜙𝜙(𝜓𝜓𝜓𝜓) =  𝜙𝜙𝜙𝜙(𝛼𝛼𝛼𝛼|𝛿𝛿𝛿𝛿0, 𝜏𝜏𝜏𝜏0)𝜙𝜙𝜙𝜙(𝜆𝜆𝜆𝜆),
where 

𝜙𝜙𝜙𝜙(𝛼𝛼𝛼𝛼|𝛿𝛿𝛿𝛿0, 𝜏𝜏𝜏𝜏0) ∝ 𝛼𝛼𝛼𝛼𝛿𝛿𝛿𝛿0−1𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜏𝜏𝜏𝜏0𝛼𝛼𝛼𝛼),
and 𝛿𝛿𝛿𝛿0 and 𝜏𝜏𝜏𝜏0 are two specified hyper 
parameters. The posterior distribution of 
(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓) based on the observed data 
𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 = (𝑐𝑐𝑐𝑐, 𝑡𝑡𝑡𝑡,𝑋𝑋𝑋𝑋, 𝛿𝛿𝛿𝛿) is given by

𝜙𝜙𝜙𝜙(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓|𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖 ) ∝ ��𝐿𝐿𝐿𝐿(𝛽𝛽𝛽𝛽,𝜓𝜓𝜓𝜓|𝐷𝐷𝐷𝐷)
𝑁𝑁𝑁𝑁

�𝜙𝜙𝜙𝜙(𝛼𝛼𝛼𝛼|𝛿𝛿𝛿𝛿0, 𝜏𝜏𝜏𝜏0)𝜙𝜙𝜙𝜙(𝜆𝜆𝜆𝜆), (8)

where the sum in equation (8) extends over 
all possible values of the vector N (Ibrahim 
et al., 2001).

In this circumstance using 
equations (6), (7) and (8) we present the 
Bayesian cure rate with canonical link 
function in the setting of generalized linear
models for E, EE, W, LL, G and LL
distributions using a survival data set and
the results have been compared via DIC.

3. Parametric Bayesian cure rate 
survival model with frailty

In this section the researcher has 
extended the previously proposed 
parametric Bayesian cure rate survival 
model. One can incorporate random-
effects (RE) to fit life time data set. We 
apply this method to examine patterns of 
clinical trials using survival data. Models 
for frailty in multivariate cure fraction 
models considered by Yin (2008). Thus for 
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times 𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 observed on subjects i and events 
j, Yin proposed multiplicative frailty at 
subject level combined with Poisson 
regression for 𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 in the cure fraction
s𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ). One option takes

𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 �𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 � = 𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝 �−𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 𝑍𝑍𝑍𝑍𝑙𝑙𝑙𝑙𝐹𝐹𝐹𝐹�𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 �� ,     (9)
with hazard rates

ℎ𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 �𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 � = 𝜃𝜃𝜃𝜃𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 𝑍𝑍𝑍𝑍𝑙𝑙𝑙𝑙𝑓𝑓𝑓𝑓�𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 �.          (10)
In this context using the above two 

equations in (6), (7) and (8) we present the 
Bayesian cure rate frailty with canonical 
link function in the setting of generalized 
linear models for E, EE, W, LL, G and LN 
distributions using a survival data set and 
the results have been compared via DIC.

4. Databases
The aim of the study is to assess 

the response time to an 8 month treatment 
regimen consisting of Ethambutol, 
Rifampicin, Isoniazid and Pyrazinamide 
thrice a week for first two months 
followed by Isoniazid and Ethambutol 
daily for next 6 months. The primary
outcome variable is sputum culture 
conversion time. A total 467 patients were 
included in the analysis. Out of these, 90% 
had favourable response and 10% had not 
responded or lost which constitute the 
censored observations. Four important 
covariates were considered for model 
comparison. The other details can be found 
from TRC-ICMR (2007).

5. Results and Discussion
In this section are presented the 

applications of life time pulmonary 
tuberculosis data set for the empirical 
comparisons using parametric Bayesian 
cure rate and parametric Bayesian cure 
rate with frailty survival model. The 
parameters estimates are obtained using 
the Markov chain Monte Carlo (MCMC) 
technique. The results are compared with 
DIC and also compared with Bayesian EE
cure rate survival model with and without 
frailty. We carried out the following two 
sub sections studies to examine the model.

5.1 Parametric Bayesian cure rate 
survival model

This section presents the modeling 
of censored survival data for parametric 
Bayesian cure rate model using 
Exponential, Exponentiated Exponential, 
Weibull, Log-Logistic, Gamma and Log-
Normal distributions. This model is fitted 
to the survival data set described in  
section 4. The estimated values of the 
parameters, the regression coefficients, 
SD, MCSE, cure rate and percentiles are 
presented in tables 1 - 6.

In the parametric Bayesian cure 
rate survival model, we used Normal prior 
for covariates (β) and Gamma prior for 
alpha (α) with 20000 and 40000 iterations
and obtained the posterior summaries of 
covariates. It can be seen from tables 1-6,
the covariates age, weight and % doses are 
significant for LN (at 20000 iterations), the 
covariates age and % doses are significant 
for LN (at 40000 iterations). Bayesian W
cure rate survival model gave the smaller 
MC standard error compared to other 
models. Bayesian LN cure rate survival 
model (at 20000 and 40000 iterations) is 
better fit than the other parametric 
Bayesian cure rate survival model based 
on DIC value (tables 1 - 6). Figures.1 - 14 
show the trace plots of the MC samples, 
autocorrelation and marginal posterior 
densities of covariates. It is noticed that for 
the Bayesian cure rate survival model, the 
plots indicate that the MC samples are 
mixing well at 20000 and 40000 iterations 
It is observed that the Bayesian LN cure
rate survival model performs better than 
the other models (E, EE, W, LL, G).  
Moreover, the cure rate of Bayesian EE
cure survival model is higher than the 
other models for pulmonary tuberculosis 
data.
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Table 1  Posterior summaries of Pulmonary Tuberculosis data under Bayesian Exponential cure 
rate survival model for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 = 0.2682; α� = 1.000; DIC = 1841
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 1.3162 0.1883 0.0106 1.1915 1.3140 1.4386 20000

Sex (𝛽𝛽𝛽𝛽1) 0.1332 0.1369 0.0060 0.0396 0.1349 0.2264 20000

Age (𝛽𝛽𝛽𝛽2) 0.0757 0.1220 0.0054 -0.0055 0.0753 0.1581 20000

Weight (𝛽𝛽𝛽𝛽3) -0.0723 0.1128 0.0047 -0.1469 -0.0735 0.0049 20000

% Doses (𝛽𝛽𝛽𝛽4) -0.2922 0.1657 0.0091 -0.3990 -0.2904 -0.1828 20000

Cure rate 0.0125 0.0095 0.0005 0.0059 0.0101 0.0165 20000

Intercept (𝛽𝛽𝛽𝛽0) 1.3311 0.1904 0.0079 1.2032 1.3321 1.4583 40000

Sex (𝛽𝛽𝛽𝛽1) 0.1309 0.1360 0.0041 0.0387 0.1325 0.2251 40000

Age (𝛽𝛽𝛽𝛽2) 0.0695 0.1232 0.0041 -0.0117 0.0709 0.1519 40000

Weight (𝛽𝛽𝛽𝛽3) -0.0712 0.1149 0.0035 -0.1484 -0.0709 0.0088 40000

% Doses (𝛽𝛽𝛽𝛽4) -0.3036 0.1670 0.0070 -0.4121 -0.3034 -0.1939 40000

Cure rate 0.0121 0.0092 0.0003 0.0057 0.0098 0.0160 40000

Table 2  Posterior summaries of Pulmonary Tuberculosis data under Bayesian Exponentiated 
Exponential cure rate survival model for n = 467, Censored % = 10 at 20000 and 40000 
iterations

Parameters �̂�𝜆𝜆𝜆 =  0.5220; α� =  2.5627; DIC = 1772
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 0.2537 0.1295 0.0130 0.1584 0.2252 0.3244 20000

Sex (𝛽𝛽𝛽𝛽1) 0.0461 0.0399 0.0020 0.0219 0.0423 0.0694 20000

Age (𝛽𝛽𝛽𝛽2) 0.0182 0.0336 0.0016 -0.0014 0.0167 0.0392 20000

Weight (𝛽𝛽𝛽𝛽3) -0.0107 0.0312 0.0013 -0.0290 -0.0095 0.0081 20000

% Doses (𝛽𝛽𝛽𝛽4) -0.0711 0.0508 0.0024 -0.1001 -0.0658 -0.0363 20000

Cure rate 0.2545 0.0474 0.0049 0.2257 0.2625 0.2896 20000

Intercept (𝛽𝛽𝛽𝛽0) 0.2408 0.1285 0.0096 0.1458 0.2144 0.3090 40000

Sex (𝛽𝛽𝛽𝛽1) 0.0452 0.0377 0.0014 0.0210 0.0422 0.0669 40000

Age (𝛽𝛽𝛽𝛽2) 0.0186 0.0324 0.0011 -0.0005 0.0174 0.0385 40000

Weight (𝛽𝛽𝛽𝛽3) -0.0102 0.0307 0.0009 -0.0280 -0.0093 0.0087 40000
% Doses (𝛽𝛽𝛽𝛽4)
Cure rate

-0.0686
0.2591

0.0511
0.0474

0.0024
0.0037

-0.0965
0.2302

-0.0631
0.2680

-0.0344
0.2944

40000
40000
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Table 3  Posterior summaries of Pulmonary Tuberculosis data under Bayesian Weibull cure rate 
survival model for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  0.5050; α� =  1.7088; DIC = 1696
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 0.6831 0.0753 0.0028 0.6280 0.6809 0.7339 20000

Sex (𝛽𝛽𝛽𝛽1) 0.0743 0.0444 0.0014 0.0442 0.0740 0.1043 20000

Age (𝛽𝛽𝛽𝛽2) 0.0234 0.0388 0.0012 -0.0038 0.0224 0.0504 20000

Weight (𝛽𝛽𝛽𝛽3) -0.0177 0.0381 0.0012 -0.0435 -0.0178 0.0085 20000

% Doses (𝛽𝛽𝛽𝛽4) -0.1076 0.0628 0.0023 -0.1499 -0.1061 -0.0640 20000

Cure rate 0.1135 0.0178 0.0006 0.1012 0.1134 0.1257 20000

Intercept (𝛽𝛽𝛽𝛽0) 0.6844 0.0747 0.0019 0.6310 0.6813 0.7334 40000

Sex (𝛽𝛽𝛽𝛽1) 0.0736 0.0443 0.0010 0.0440 0.0735 0.1035 40000

Age (𝛽𝛽𝛽𝛽2) 0.0230 0.0387 0.0008 -0.0034 0.0220 0.0490 40000

Weight (𝛽𝛽𝛽𝛽3) -0.0176 0.0390 0.0009 -0.0434 -0.0174 0.0091 40000

% Doses (𝛽𝛽𝛽𝛽4) -0.1081 0.0631 0.0016 -0.1498 -0.1059 -0.0637 40000

Cure rate 0.1134 0.0178 0.0004 0.1013 0.1135 0.1255 40000

Table 4   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Log-Logistic 
cure rate survival model for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  0.4130; α� =  3.2229; DIC = 1577
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 0.8843 0.0955 0.0034 0.8201 0.8820 0.9468 20000

Sex (𝛽𝛽𝛽𝛽1) 0.0811 0.0629 0.0022 0.0369 0.0798 0.1242 20000

Age (𝛽𝛽𝛽𝛽2) 0.0763 0.0574 0.0020 0.0373 0.0755 0.1145 20000

Weight (𝛽𝛽𝛽𝛽3) -0.0244 0.0546 0.0018 -0.0608 -0.0246 0.0119 20000

% Doses (𝛽𝛽𝛽𝛽4) -0.1547 0.0867 0.0031 -0.2122 -0.1535 -0.0941 20000

Cure rate 0.0600 0.0149 0.0005 0.0495 0.0592 0.0694 20000

Intercept (𝛽𝛽𝛽𝛽0) 0.8838 0.0950 0.0024 0.8192 0.8823 0.9461 40000

Sex (𝛽𝛽𝛽𝛽1) 0.0821 0.0618 0.0016 0.0395 0.0818 0.1240 40000

Age (𝛽𝛽𝛽𝛽2) 0.0753 0.0562 0.0014 0.0375 0.0747 0.1127 40000

Weight (𝛽𝛽𝛽𝛽3) -0.0245 0.0539 0.0012 -0.0606 -0.0247 0.0118 40000

% Doses (𝛽𝛽𝛽𝛽4) -0.1545 0.0868 0.0021 -0.2118 -0.1537 -0.0965 40000

Cure rate 0.0601 0.0150 0.0003 0.0495 0.0593 0.0695 40000
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Table 5   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Gamma cure 
rate survival model for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  1.7538; α� =  1.4066; DIC = 1828
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 0.3994 0.1224 0.0052 0.3183 0.3978 0.4790 20000

Sex (𝛽𝛽𝛽𝛽1) 0.0294 0.0757 0.0025 -0.0199 0.0308 0.0799 20000

Age (𝛽𝛽𝛽𝛽2) 0.0218 0.0617 0.0022 -0.0199 0.0204 0.0626 20000

Weight (𝛽𝛽𝛽𝛽3) 0.0265 0.0608 0.0023 -0.0141 0.0255 0.0662 20000

% Doses (𝛽𝛽𝛽𝛽4) 0.0794 0.0882 0.0028 0.0181 0.0759 0.1358 20000

Cure rate 0.2093 0.0350 0.0018 0.1850 0.2079 0.2323 20000

Intercept (𝛽𝛽𝛽𝛽0) 0.4018 0.1193 0.0034 0.3203 0.3995 0.4790 40000

Sex (𝛽𝛽𝛽𝛽1) 0.0304 0.0730 0.0017 -0.0179 0.0313 0.0792 40000

Age (𝛽𝛽𝛽𝛽2) 0.0220 0.0612 0.0015 -0.0183 0.0219 0.0625 40000

Weight (𝛽𝛽𝛽𝛽3) 0.0261 0.0622 0.0017 -0.0148 0.0245 0.0670 40000

% Doses (𝛽𝛽𝛽𝛽4) 0.0765 0.0866 0.0019 0.0178 0.0727 0.1323 40000

Cure rate 0.2081 0.0342 0.0010 0.1847 0.2080 0.2309 40000

Table 6   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Log-Normal 
cure rate survival model for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  0.3560; α� =  0.5129; DIC = 1444
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 1.0327 0.2249 0.0251 0.8937 1.0284 1.1730 20000

Sex (𝛽𝛽𝛽𝛽1) -0.1854 0.1605 0.0140 -0.2937 -0.1827 -0.0696 20000

Age (𝛽𝛽𝛽𝛽2)** -0.0926 0.1389 0.0083 -0.1855 -0.0907 0.0056 20000

Weight (𝛽𝛽𝛽𝛽3)* 0.0051 0.1310 0.0086 -0.0872 -0.0006 0.0863 20000

% Doses (𝛽𝛽𝛽𝛽4)* 0.1408 0.1913 0.0209 0.0142 0.1440 0.2619 20000

Cure rate 0.1238 0.0457 0.0040 0.0895 0.1199 0.1525 20000

Intercept (𝛽𝛽𝛽𝛽0) 1.0485 0.2267 0.0183 0.9007 1.0406 1.1983 40000

Sex (𝛽𝛽𝛽𝛽1) -0.1771 0.1594 0.0098 -0.2845 -0.1731 -0.0648 40000

Age (𝛽𝛽𝛽𝛽2)$ -0.1061 0.1382 0.0066 -0.1991 -0.1060 -0.0095 40000

Weight (𝛽𝛽𝛽𝛽3) 0.0052 0.1306 0.0062 -0.0860 0.0018 0.0916 40000

% Doses (𝛽𝛽𝛽𝛽4)*** 0.1244 0.1949 0.0152 -0.0104 0.1326 0.2574 40000

Cure rate 0.1217 0.0470 0.0031 0.0864 0.1189 0.1530 40000
* p < 0.05; ** p < 0.01; *** p < 0.001; $ p < 0.0001



42 IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH

Volume : 3 | Issue : 6 | June 2014 • ISSN No 2277 - 8179 Research Paper

International Journal of Scientific Research
Website: www.theglobaljournals.com (ISSN 2277-8179) 

8 
 

1. Sig-Shape 2.b0-Intercept

3. b1-Sex      4.b2-Age

        5. b3-Weight 6.b4-%Doses  

     7. pi – Cure rate

Figure 1-7 Trace plots, Autocorrelations and Marginal posterior densities of  coefficients using 
Bayesian Log-Normal cure rate survival model after 20000 iterations for Pulmonary 
Tuberculosis data
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8. Sig-Shape 9.b0-Intercept

10. b1-Sex 11.b2-Age     

      12 b3-Weight 13 b4-% Doses  

   14 pi - Cure rate

Figure 8-14 Trace plots, Autocorrelations and Marginal posterior densities of coefficients using 
Bayesian Log-Normal cure rate survival model after 40000 iterations for Pulmonary 
Tuberculosis data
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5.2.1 Parametric Bayesian cure rate survival model with frailty 
This section considers the modeling of censored survival 

data for parametric Bayesian cure rate with frailty using 
Exponential, Exponentiated Exponential, Weibull, Log-Logistic, 
Gamma and Log-Normal distributions. This model is fitted to the 
life time pulmonary tuberculosis data set described in section 4 and 
the results are compared with DIC. The estimated values of the 
parameters, the regression coefficients, SD, MCSE and percentiles 
are presented in tables 7 - 12.

In the parametric Bayesian cure rate survival model with 
frailty, the researcher used Normal prior for random effect (Z) and 
covariates (β) and Gamma prior for alpha (α) with 20000 and 40000 
iterations and obtained the posterior summaries of covariates. We
observed from tables 7 - 12, the covariates age, and ‘% doses’ are 
significant for EE (at 20000 iterations), and the covariates age is 
significant for LN (at 20000 iterations). Bayesian W cure rate 
survival model with frailty gave the smaller MC standard error 
compared to other models. We noticed that from Tables 7 - 12, the 
Bayesian LN cure rate survival model with frailty has smaller DIC at 
20000 and 40000 iterations. Figures 15 – 30 show the trace plots of 
the MC samples, autocorrelation and marginal posterior densities of 
covariates. It is noticed that for the Bayesian cure rate survival 
model with frailty, the plots indicate that the MC samples are 
mixing well at 20000 and 40000 iterations. It is observed that the 
performance of Bayesian LN cure rate survival model with frailty is 
better fit compared to other models.
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Table 7   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Exponential cure 
rate survival model with frailty for n = 467,     Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  1.9947; α� = 1.0000; DIC = 1841
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) -0.6905 1.2508 0.2603 -1.5214 -0.8977 0.1663 20000
Sex (𝛽𝛽𝛽𝛽1) 0.1239 0.1295 0.0073 0.0356 0.1270 0.2105 20000
Age (𝛽𝛽𝛽𝛽2) 0.0701 0.1205 0.0059 -0.0090 0.0720 0.1521 20000
Weight (𝛽𝛽𝛽𝛽3) -0.0675 0.1177 0.0061 -0.1515 -0.0721 0.0106 20000
% Doses (𝛽𝛽𝛽𝛽4) -0.3170 0.1654 0.0097 -0.4256 -0.3128 -0.2120 20000
Z (RE) 2.0362 1.2444 0.2604 1.1853 2.2294 2.8804 20000
Cure rate 0.0118 0.0098 0.0005 0.0055 0.0095 0.0149 20000
Intercept (𝛽𝛽𝛽𝛽0) -1.4339 2.2800 0.3523 -2.0809 -0.8933 0.1348 40000
Sex (𝛽𝛽𝛽𝛽1) 0.1275 0.1291 0.0049 0.0401 0.1290 0.2142 40000
Age (𝛽𝛽𝛽𝛽2) 0.0675 0.1219 0.0041 -0.0138 0.0700 0.1499 40000
Weight (𝛽𝛽𝛽𝛽3) -0.0733 0.1137 0.0051 -0.1520 -0.0781 0.0020 40000
% Doses (𝛽𝛽𝛽𝛽4) -0.3123 0.1622 0.0065 -0.4201 -0.3097 -0.2048 40000
Z (RE) 2.7762 2.2702 0.3515 1.2198 2.2024 3.4216 40000
Cure rate 0.0118 0.0092 0.0003 0.0056 0.0095 0.0153 40000

Table 8   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Exponentiated 
Exponential cure rate survival model with frailty for     n = 467, Censored % = 10 at 20000 and 
40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  0.0143; α� =  2.7276; DIC = 1770
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) -1.5564 1.0421 0.2270 -2.2665 -1.5067 -1.0701 20000
Sex (𝛽𝛽𝛽𝛽1) 0.0448 0.0360 0.0024 0.0214 0.0412 0.0622 20000
Age (𝛽𝛽𝛽𝛽2)* 0.0164 0.0299 0.0024 0.0005 0.0172 0.0341 20000
Weight (𝛽𝛽𝛽𝛽3) -0.0109 0.0299 0.0021 -0.0288 -0.0097 0.0088 20000
% Doses (𝛽𝛽𝛽𝛽4)*** -0.0682 0.0471 0.0043 -0.0926 -0.0616 -0.0370 20000
Z (RE) 1.7843 1.0179 0.2223 1.4279 1.7234 2.4499 20000
Cure rate 0.2644 0.0465 0.0063 0.2360 0.2727 0.2982 20000
Intercept (𝛽𝛽𝛽𝛽0) -2.9318 1.6302 0.2548 -4.4726 -3.1368 -1.5067 40000
Sex (𝛽𝛽𝛽𝛽1) 0.0455 0.0361 0.0016 0.0219 0.0430 0.0648 40000
Age (𝛽𝛽𝛽𝛽2) 0.0188 0.0331 0.0020 0.0000 0.0187 0.0381 40000
Weight (𝛽𝛽𝛽𝛽3) -0.0119 0.0313 0.0015 -0.0309 -0.0105 0.0091 40000
% Doses (𝛽𝛽𝛽𝛽4) -0.0672 0.0482 0.0030 -0.0930 -0.0606 -0.0346 40000
Z (RE) 3.1686 1.6284 0.2549 1.7234 3.3099 4.8038 40000
Cure rate 0.2602 0.0464 0.0043 0.2324 0.2686 0.2946 40000

* p < 0.05; *** p < 0.001
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Table 9   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Weibull cure 
rate survival model with frailty for n = 467, Censored % = 10 at 20000 and 40000 iterations

Parameters �̂�𝜆𝜆𝜆 =  5.7592; α� =  1.7089; DIC = 1696
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 1.7508 0.6108 0.1316 1.1228 1.9733 2.2596 20000
Sex (𝛽𝛽𝛽𝛽1) 0.0733 0.0434 0.0022 0.0434 0.0720 0.1028 20000
Age (𝛽𝛽𝛽𝛽2) 0.0218 0.0384 0.0026 -0.0039 0.0219 0.0469 20000
Weight (𝛽𝛽𝛽𝛽3) -0.0153 0.0396 0.0022 -0.0420 -0.0161 0.0118 20000
% Doses (𝛽𝛽𝛽𝛽4) -0.1021 0.0637 0.0035 -0.1400 -0.0987 -0.0592 20000
Z (RE) -1.0719 0.6113 0.1327 -1.5873 -1.3100 -0.4183 20000
Cure rate 0.1152 0.0180 0.0011 0.1035 0.1154 0.1274 20000

Intercept (𝛽𝛽𝛽𝛽0) 1.8807 0.5891 0.0898 1.4290 1.9967 2.3383 40000
Sex (𝛽𝛽𝛽𝛽1) 0.0718 0.0434 0.0015 0.0422 0.0716 0.1012 40000
Age (𝛽𝛽𝛽𝛽2) 0.0206 0.0376 0.0016 -0.0053 0.0204 0.0458 40000
Weight (𝛽𝛽𝛽𝛽3) -0.0163 0.0387 0.0014 -0.0420 -0.0164 0.0103 40000
% Doses (𝛽𝛽𝛽𝛽4) -0.1061 0.0623 0.0024 -0.1452 -0.1039 -0.0641 40000
Z (RE) -1.1968 0.5830 0.0895 -1.6569 -1.3204 -0.7376 40000
Cure rate 0.1145 0.0175 0.0007 0.1030 0.1149 0.1265 40000

Table 10   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Log-Logistic 
cure rate survival model with frailty for n = 467,     Censored % = 10 at 20000 and 40000 
iterations

Parameters �̂�𝜆𝜆𝜆 = 1.0196; α� =  3.2342; DIC = 1578
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) -0.0194 0.3439 0.0674 -0.2527 0.0016 0.1961 20000
Sex (𝛽𝛽𝛽𝛽1) 0.0765 0.0643 0.0035 0.0327 0.0768 0.1199 20000
Age (𝛽𝛽𝛽𝛽2) 0.0763 0.0569 0.0024 0.0386 0.0736 0.1148 20000
Weight (𝛽𝛽𝛽𝛽3) -0.0211 0.0569 0.0025 -0.0566 -0.0211 0.0159 20000
% Doses (𝛽𝛽𝛽𝛽4) -0.1582 0.0899 0.0065 -0.2146 -0.1598 -0.1018 20000
Z (RE) 0.9087 0.3342 0.0671 0.7102 0.8860 1.1247 20000
Cure rate 0.0601 0.0160 0.0010 0.0494 0.0585 0.0697 20000

Intercept (𝛽𝛽𝛽𝛽0) -0.4867 0.6711 0.1028 -0.9823 -0.3319 0.0462 40000
Sex (𝛽𝛽𝛽𝛽1) 0.0772 0.0640 0.0024 0.0334 0.0787 0.1203 40000
Age (𝛽𝛽𝛽𝛽2) 0.0761 0.0561 0.0017 0.0384 0.0753 0.1142 40000
Weight (𝛽𝛽𝛽𝛽3) -0.0223 0.0567 0.0018 -0.0598 -0.0229 0.0149 40000
% Doses (𝛽𝛽𝛽𝛽4) -0.1589 0.0917 0.0047 -0.2168 -0.1575 -0.0969 40000
Z (RE) 1.3767 0.6627 0.1019 0.8511 1.2125 1.8777 40000
Cure rate 0.0598 0.0157 0.0007 0.0491 0.0587 0.0696 40000
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Table 11   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Gamma cure 
rate survival model with frailty for n = 467, Censored % = 10 at 20000 and 40000 iterations
Parameters �̂�𝜆𝜆𝜆 =  0.7999; α� =  1.4028; DIC = 1827

Iteration
Covariates Mean SD MCSE Percentiles

25% 50% 75%
Intercept (𝛽𝛽𝛽𝛽0) -0.1592 0.5485 0.1161 -0.5769 -0.2707 0.3398 20000
Sex (𝛽𝛽𝛽𝛽1) 0.0318 0.0726 0.0038 -0.0173 0.0340 0.0802 20000
Age (𝛽𝛽𝛽𝛽2) 0.0230 0.0667 0.0032 -0.0207 0.0226 0.0664 20000
Weight (𝛽𝛽𝛽𝛽3) 0.0241 0.0634 0.0024 -0.0180 0.0228 0.0662 20000
% Doses (𝛽𝛽𝛽𝛽4) 0.0665 0.0808 0.0053 0.0098 0.0684 0.1211 20000
Z (RE) 0.5689 0.5369 0.1141 0.0634 0.7040 0.9693 20000
Cure rate 0.2048 0.0337 0.0022 0.1817 0.2042 0.2278 20000
Intercept (𝛽𝛽𝛽𝛽0) 0.1696 0.7566 0.1159 -0.4516 0.0889 0.6670 40000
Sex (𝛽𝛽𝛽𝛽1) 0.0315 0.0712 0.0026 -0.0167 0.0330 0.0793 40000
Age (𝛽𝛽𝛽𝛽2) 0.0230 0.0635 0.0021 -0.0183 0.0226 0.0649 40000
Weight (𝛽𝛽𝛽𝛽3) 0.0237 0.0626 0.0017 -0.0180 0.0233 0.0657 40000
% Doses (𝛽𝛽𝛽𝛽4) 0.0685 0.0826 0.0040 0.0109 0.0699 0.1237 40000
Z (RE) 0.2413 0.7513 0.1154 -0.2522 0.3448 0.8417 40000
Cure rate 0.2045 0.0344 0.0017 0.1813 0.2033 0.2271 40000

Table 12   Posterior summaries of Pulmonary Tuberculosis data under Bayesian Log-Normal 
cure rate survival model with frailty for n = 467,   Censored % = 10 at 20000 and 40000 
iterations

Parameters �̂�𝜆𝜆𝜆 = 0.1385; α� = 0.5126; DIC = 1444
Iteration

Covariates Mean SD MCSE Percentiles
25% 50% 75%

Intercept (𝛽𝛽𝛽𝛽0) 1.9766 1.6786 0.3615 0.4197 2.0388 3.4266 20000
Sex (𝛽𝛽𝛽𝛽1) -0.1632 0.1657 0.0114 -0.2724 -0.1666 -0.0479 20000
Age (𝛽𝛽𝛽𝛽2) -0.1147 0.1407 0.0091 -0.2100 -0.1134 -0.0175 20000
Weight (𝛽𝛽𝛽𝛽3) 0.0066 0.1356 0.0093 -0.0868 0.0070 0.0977 20000
% Doses (𝛽𝛽𝛽𝛽4) 0.1272 0.1845 0.0094 0.0014 0.1335 0.2575 20000
Z (RE) -0.9363 1.6622 0.3612 -2.4123 -0.9498 0.6409 20000
Cure rate 0.1220 0.0460 0.0025 0.0882 0.1184 0.1505 20000
Intercept (𝛽𝛽𝛽𝛽0) 1.4383 2.8926 0.4473 -1.1908 1.5655 3.6347 40000
Sex (𝛽𝛽𝛽𝛽1) -0.1635 0.1645 0.0079 -0.2735 -0.1639 -0.0508 40000
Age (𝛽𝛽𝛽𝛽2) -0.1183 0.1380 0.0062 -0.2118 -0.1198 -0.0235 40000
Weight (𝛽𝛽𝛽𝛽3) 0.0018 0.1349 0.0051 -0.0911 -0.0013 0.0929 40000
% Doses (𝛽𝛽𝛽𝛽4) 0.1272 0.1856 0.0073 0.0050 0.1291 0.2514 40000
Z (RE) -0.3941 2.8850 0.4473 -2.5881 -0.5311 2.2330 40000
Cure rate 0.1220 0.0463 0.0019 0.0887 0.1178 0.1504 40000

* p < 0.05 
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       15 Sig-Shape 16 b0-Intercept

                   17 b1-Sex 18 b2- Age

        19 b3- Weight        20 b4- % Doses  

        21 Z – Random effect (RE)                       22 pi – Cure rate

Figure 15-22 Trace plots, Autocorrelations and Marginal posterior densities of coefficients using 
Bayesian Log-Normal cure rate survival model with frailty after 20000 iterations for Pulmonary 
Tuberculosis data
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          23.Sig-Shape 24.b0-Intercep

           25.b1-Sex                 26.b2- Age

         21.b3- Weight 28.b4- % Doses  

29.Z – Random effect (RE) 30.pi – Cure rate
Figure 23-30 Trace plots, Autocorrelations and Marginal posterior densities of coefficients using 
Bayesian Log-Normal cure rate survival model with frailty after 40000 iterations for Pulmonary 
Tuberculosis data
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6. Summary and Conclusions
The parametric Bayesian cure rate survival model with and 

without frailty for life time censored pulmonary tuberculosis data 
have been fitted in this research article. The parameters have been 
estimated (unknown shape, scale, Posterior Summaries of regression 
coefficients and random effects) using MCMC techniques with the 
help of SAS.

We observed from Tables 1 - 6 in section 5.1 reveal that the 
Bayesian LN cure rate survival model has smaller DIC at 20000 and 
40000 iterations which is considered to be better fit compared to 
other models. The trace plots of Bayesian LN cure rate survival 
model in Figures 1 - 14 indicate that MC samples are mixing well at 
40000 iterations. The cure rate of Bayesian EE cure rate survival 
model is higher than the other models

We found that from Tables 7 - 12 in section 5.2 the Bayesian 
LN cure rate survival model with frailty has the smaller DIC at 
20000 and 40000 iterations compared to other models. The cure rate 
of Bayesian EE cure survival model with frailty is higher than the 
other models. We observed from Figures 15 - 30 the plots indicate 
that the MC samples are mixing well at 40000 iterations compared 
to 20000 iterations for Bayesian LN cure rate survival model with 
frailty. The performance of Bayesian LN cure rate survival model 
with frailty is better fit than the other models.

We observed from sections 5.1 and 5.2, that the 
Bayesian LN cure rate and Bayesian LN cure rate with frailty 
survival model using MCMC techniques seems to be more 

International Journal of Scientific Research
Website: www.theglobaljournals.com (ISSN 2277-8179) 

17 
 

appropriate for the study of the right 
censored pulmonary tuberculosis data
compared to other models based on DIC 
value for 20000 and 40000 iterations. 
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