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Mononuclear phagocytes like monocytes/macrophages engulf microbes and mediate intracellular killing through 
the activation of various antimicrobial activities such as synthesis of anti-microbial peptides, reactive 
oxygen/nitrogen intermediates and autophagy induction. However, intracellular pathogens like M. tuberculosis 
evade from macrophage defence mechanisms by various strategies to adapt the intracellular environment of 
macrophages and creating a major host cell niche for its growth and survival. 1, 25-dihydroxyvitamin D3 

[1,25(OH)2D3] is the active metabolite of vitamin D, which modulates immune functions mediated by monocytes, 
macrophages, dendritic cells, T cells and B cells. Genomic actions of 1, 25(OH)2D3 exert through the vitamin D 
receptor, which is expressed constitutively in macrophages. Various studies have shown that 1,25(OH)2D3 
enhances the macrophage phagocytosis by upregulating the surface receptors including CD14 and mannose 
receptor. Moreover, 1,25(OH)2D3 enhances the antimicrobial effects of macrophages by upregulating the 
expression of cathelicidin antimicrobial peptide and defensin, which inhibit the intracellular growth of M. 
tuberculosis. 1, 25(OH)2D3 mediated cathelicidin expression upregulates the autophagy genes and enhance the 
fusion of phagosome containing M. tuberculosis with lysosome. Apart from antimicrobial effects, 1,25(OH)2D3 also 
modulates the antigen presentation and secretion of chemokines, cytokines and other factors of macrophages. In 
conclusion, it has been suggested that 1,25(OH)2D3 enhances macrophage innate immune functions by 
upregulating the antimicrobial efficiency, which could be beneficial to the host during active tuberculosis disease. 
In addition, during anti-TB treatment, nutritional supplementation of vitamin D could be helpful to minimize the 
inflammation at the site of infection. 
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Introduction 

The resident alveolar macrophages and neutrophils are the 
primary immune cells that influx to the site of infection during 
early M. tuberculosis pathogenesis [1]. Macrophages are the 
main cells of the immune system which are differentiated 
from monocytes and they engulf microbes and other cellular 
debris through phagocytosis. Monocyte/macrophage 
phagocytosis of tubercle bacilli is mediated by a diverse array 
of receptors such as complement receptors, mannose receptor, 

dendritic cell-specific intercellular adhesion molecule 
(ICAM)-3-grabbing nonintegrin (DC-SIGN), toll like 
receptors, CD14 and Fc receptors [2-4]. Following 
phagocytosis, phagosomes are formed in a process called 
focal exocytosis [5] and these phagosomes mature by attaining 
low pH, degradative hydrolases and rapidly fuse with 
lysosomes to form phagolysosomes [6]. This creates a 
microenvironment where the bacteria subject to the action of 
hydrolytic enzymes such as hydrolases, proteases, superoxide 
dismutase and lysozymes, which are detrimental to the 

REVIEW 



Macrophage 2015; 2: e756. doi: 10.14800/Macrophage.756; © 2015 by Paramasivam Selvaraj, et al. 
http://www.smartscitech.com/index.php/Macrophage 

 

Page 2 of 9 
 

bacteria. In response to the phagocytic stimuli, macrophages 
produce reactive nitrogen intermediates (RNI) as well as 
reactive oxygen intermediates (ROI) such as superoxides, 
hydrogen peroxide and hydroxyl radicals [7, 8], which inhibit 
the growth of intracellular bacteria. 

1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the hormonally 
active metabolite of vitamin D, act as an immuno-modulator 
and regulate the various macrophage functions (Figure 1). A 
recent study demonstrated that vitamin D supplementation 
restored the impaired immune response and better clinical 
outcome in tuberculosis patients [9], which reveals that 
sufficient vitamin D level has an important role to control the 
intracellular infection like tuberculosis. In the current review, 

we focused on the immuno-modulatory effects of vitamin D3 
on macrophage functions mainly in tuberculosis.  

Vitamin D: Mode of action 

Vitamin D belongs to the class of secosteroids, mainly 
involves in the homeostasis of calcium, magnesium and 
phosphate and regulates bone metabolism. There are two 
major forms of vitamin D metabolites; Vitamin D2 
(ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D 
is synthesised from 7-dehydrocholestrol by the action of 
ultraviolet B (UVB- spectrum 280–320 nm) in the skin or it 
can be attained from food such as fatty fish and mushroom. 
Vitamin D3 includes both calcidiol (25-hydroxyvitamin D3) 
and calcitriol (1,25-dihydroxyvitamin D3). 

Figure 1. Toll-like receptor-2/1 (TLR-2/1) dimer recognizes M. tuberculosis and induces the 
expression of CYP27B1 and vitamin D receptor (VDR). CYP27B1 converts 25(OH)D3 into 
1,25(OH)2D3, which bind with VDR and induce the formation of VDR–RXR (retinoid X-receptor) 
complex that interact with vitamin D response elements (VDRE) in the promoter region and modulate 
various immune functions. 1,25(OH)2D3 upregulates the macrophage cell surface markers CD14 and 
CD206, phagocytosis, triggering receptor expressed on myeloid cells-1 (TREM-1), cathelicidin 
anti-microbial peptide (CAMP), beta-defensin-4 (DEFB4), autophagy-related genes such as Atg5 and 
Beclin-1, cytokines interleukin (IL)-1β and IL-10. On the other hand, 1,25(OH)2D3 downregulates the 
tryptophan-aspartate-containing coat protein (TACO), proadipogenic peroxisome 
proliferator–activated receptor-γ (PPAR-γ), hepcidin antibacterial protein (HAMP), major 
histocompatibility complex II (MHC class II), cytokines IL-6, IL-12, tumor necrosis factor-α (TNF-α), 
chemokines such as macrophage chemotactic protein-1 (MCP-1) and interferon-γ inducible 
protein-10 (IP-10), matrix metalloproteinases 7,8 and 10 (MMP-7,8 and 10). 
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25-hydroxyvitamin D3 [25(OH)D3] is considered as major 
circulating form of vitamin D metabolite and serum 
25(OH)D3 level less than 20 nmol/L is often considered as 
vitamin D deficiency [10]. The genomic actions of 
1,25(OH)2D3 are initiated after binding to the nuclear vitamin 
D receptor (VDR), a member of the nuclear receptor 
superfamily, which acts as a transcription factor and interact 
with vitamin D response elements (VDRE) through various 
mechanisms and influence the expression of various genes and 
microRNAs [11-13]. It has been shown that 1,25(OH)2D3 
treatment appreciably increases the number of VDR binding 
sites and alter the expression of various genes [14, 15]. In 
addition, 1,25(OH)2D3 mediated gene expression profile may 
vary in different cell types and depends on a duration of 
1,25(OH)2D3 treatment [16]. Moreover, 1,25(OH)2D3 mediated 
antimicrobial activity in monocytes depends on the 
bioavailability of 25(OH)D3, which is inversely correlated 
with vitamin D binding protein (DBP) levels as well as 
binding affinity between 25(OH)D3 and DBP [17, 18]. 

Vitamin D and macrophage phagocytosis 

Phagocytosis is the vital defence mechanism of 
monocyte-derived macrophages through its cell surface 
receptors. Several studies demonstrated that 1,25(OH)2D3 
induces the differentiation of precursor monocytes into mature 
macrophages [19, 20]. Moreover, macrophages upon treatment 
with 1,25(OH)2D3 was shown to induce the formation of 
multinucleate giant cells which control the dissemination of 
M. tuberculosis and prevent the loss of macrophages during 
infection [21-23]. 1,25(OH)2D3 while upregulates the expression 
of CD14 and mannose receptor in monocytes, it suppresses 
the generation of dendritic cells from monocytes [24-26].  
Another study demonstrated that a combination of vitamin D3 
and retinoic acid treatment upregulate the mannose receptor 
and Dendritic Cell-Specific Intercellular adhesion 
molecule-3-Grabbing Non-integrin (DC-SIGN) expression on 
THP1 macrophage cell line that enhance the bacterial uptake 
and intracellular killing of mycobacteria by triggering the 
synthesis of reactive oxygen species and the induction of 
autophagy [23]. It has been shown that 1,25(OH)2D3 augments 
the chemotactic potential of monocytes and upregulates  
bacterial uptake in a complement-dependent way [27]. Our 
previous study has shown that 1,25(OH)2D3 enhances 
macrophage phagocytosis of live M. tuberculosis [28] and this 
enhanced monocyte/macrophage phagocytic potential is 
positively correlated with the upregulated expression of 
cathelicidin antimicrobial peptide (CAMP) [29]. Monocytes 
and macrophages also express various defensins [30] and these 
defensins also play an important role in the control of 
mycobacterial growth [31]. The influence of 1,25(OH)2D3 on 
antimicrobial peptide synthesis is discussed in a separate 
section. A recent study has shown that 1,25(OH)2D3 amplifies 

the innate immune responses of monocytes/macrophages by 
upregulating the expression of ‘triggering receptor expressed 
on myeloid cells-1’ (TREM-1) [32]. These studies suggest that 
1,25(OH)2D3 enhances intracellular killing of pathogens by 
upregulating the phagocytic potential of macrophages as well 
as activating the various anti-microbial mechanisms. 

Microbicidal function of macrophages 

Upon activation of macrophages by suitable agents such as 
lipo-polysaccharides (LPS), interferon-γ (IFN-γ) and tumour 
necrosis factor-α (TNF-α) generate an inducible enzyme 
called nitric oxide synthase (iNOS), which cleaves L- arginine 
into L- citrulline and generate reactive nitric oxide [33] and  
this reactive nitric oxide is involved in killing of M. 
tuberculosis. It has been shown that 1,25(OH)2D3 enhances 
human monocyte anti-mycobacterial activity by enhancing 
the synthesis of ROI and RNI in M. tuberculosis infected 
macrophages as well as THP1 cells via NADPH oxidase 
system and is regulated by phosphatidyl inositol 3-kinase (PI 
3-K) signalling pathways [23, 34]. Apoptosis is another defence 
mechanism associated with reduced pathogen viability in 
infected macrophages [35]. Moreover, macrophage 
phagocytosis of M. tuberculosis results in the secretion of 
various cytokines such as TNF-α, interleukin-12 (IL-12) and 
IFN-γ, which play an important role against tuberculosis [36]. It 
has been shown that IFN-γ activates various macrophage 
anti-microbial mechanisms such as anti-microbial peptide 
synthesis and autophagy induction during M. tuberculosis 
infection; however, sufficient vitamin D level in the system is 
required for inducing optimal immune responses [37]. 

Invasive mechanisms of M. tuberculosis in macrophage  

Although macrophages employ different mechanisms to 
kill the engulfed microbes, but bacteria like M. tuberculosis 
have developed different approaches to stay alive within the 
hostile environment of the phagocytes. Mycobacterial 
antigens induce the expression of various anti-inflammatory 
cytokines like IL-10 and transforming growth factor-β 
(TGF-β) in monocytes and dendritic cells and these cytokines 
in turn downregulate the protective macrophage functions [38]. 
The virulent strains of M. tuberculosis prevent phagosome 
fusion with lysosome and avert the phagosomal acidification 
[39] thus favour the survival of bacteria inside the 
macrophages. Mycobacterial sulfatides [40] and ammonia 
production by M. tuberculosis under in vitro conditions have 
been reported to inhibit phagolysosomal fusion [41]. Moreover, 
M. tuberculosis suppresses the formation of phago-lysosome 
by inducing the expression of TACO (tryptophan 
aspartate-containing coat) protein that creates a coat around 
the phagosome and prevents its fusion with lysosomes [42]. 
1,25(OH)2D3 exerts various anti-invasive mechanisms to 
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control mycobacterial growth in macrophages. It has been 
shown that 1,25(OH)2D3 downregulates the transcription of 
TACO gene and inhibit the survival of M. tuberculosis in 
human macrophages [43]. Further, another study reported that 
1,25(OH)2D3 augments the fusion of phagosomes with 
lysosomes in the infected macrophages and suppresses the 
viability of M. tuberculosis [44]. 

In addition, M.tuberculosis infection downregulates the 
MHC class II molecule expression in macrophages thereby 
inhibit the pathogen recognition by CD4+ T-cells [45]. Further, 
M. tuberculosis inhibits macrophage apoptosis by triggering 
the synthesis of lipoxin A4 (LXA4) (pronecrotic), which 
inhibit prostaglandin E2 (PGE2) (proapoptotic) synthesis that 
leads to necrosis of infected macrophages and mycobacterial 
spread [46]. The modulation of cytokine production by 
microRNAs (miRNAs) may be an effective escape 
mechanism of M. tuberculosis in macrophages. A study 
reported that higher expression of miR-125b expression 
results in destabilization of TNF-α mRNA and its level in M. 
tuberculosis infected human macrophages [47]. A study has 
shown that M. tuberculosis infected macrophages differentiate 
into lipid rich foam cells by accumulating lipid droplets that 
are required for its intracellular growth [48, 49]. Another recent 
study reported that vitamin D3 treatment inhibited the 
accumulation of lipid droplets in infected macrophages by 
downregulating the expression of proadipogenic peroxisome 
proliferator–activated receptor-γ (PPAR-γ) and control the 
growth of intracellular M. tuberculosis [50]. 

Vitamin D and antimicrobial peptide synthesis 

Antimicrobial peptides have an important role in host 
innate immunity and have wide antimicrobial activity against 
microbes such as bacteria, virus and fungi [51]. Antimicrobial 
peptides such as cathelicidin antimicrobial peptide (CAMP) 
and beta-defensin-4 (DEFB4) are expressed by various 
immune cells including macrophages, which contribute to 
antimicrobial activity. 1,25(OH)2D3 triggered anti-microbial 
activity was first suggested by Rook and Crowle. They have 
shown that intracellular replication of M. tuberculosis are 
suppressed in monocytes that cultured in the presence of 
1,25(OH)2D3 [52, 53]. It has been shown that 1,25(OH)2D3 
interacts with three VDREs located in the promoter region of 
CAMP gene and induces its expression in monocytes, 
neutrophils, keratinocytes and human cell lines [54-56]. M. 
tuberculosis derived lipopeptide triggers TLR2/1 signalling in 
macrophages and upregulate the expression of VDR and 
1α-hydroxylase (CYP27B1) that induce the expression of 
CAMP [57]. Subsequent studies have revealed that increased 
CAMP expression mediated by 1,25(OH)2D3 is involved in 
the intracellular killing of M. tuberculosis in macrophages [58, 

59]. 1,25(OH)2D3-mediated CAMP expression is higher in 

monocytes/macrophages of pulmonary tuberculosis patients 
with less severe forms of tuberculosis than cavitary disease 
[29], who have a higher bacterial load in the lung. Another 
study has shown that 1,25(OH)2D3-mediated cathelicidin 
expression depends on the stimulation of NADPH oxidase 
(NOX)2 signalling pathway [60]. LL-37 is the active form of 
CAMP, generated by enzymatic cleavage of human 
cathelicidin antimicrobial peptide-18 (hCAP18) by 
proteinase-3 [61]. Earlier studies have shown that LL-37 can 
directly kill the bacteria by disrupting the structure of 
microbial membrane [62]. Since LL-37 restricts the replication 
of drug sensitive and multi-drug resistant (MDR) M. 
tuberculosis [63], the application of antimicrobial peptides for 
the management of MDR-TB is a recently achieved research 
interest.  

 Defensins are another group of antimicrobial peptides 
associated with antimicrobial activity against drug sensitive 
and drug resistant M. tuberculosis thus play a crucial role in 
the control of mycobacterial growth [31, 64]. In addition to 
CAMP, it is reported that 1,25(OH)2D3 also enhances the 
expression of beta-defensin-4 (DEFB4) in 
monocytes/macrophages [37, 65]. Another study demonstrated 
that 1,25(OH)2D3 robustly induces pattern recognition 
receptor nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2)/caspase recruitment 
domain-containing protein 15 (CARD15) gene expression 
that recognize muramyl dipeptide (MDP), and upregulate the 
expression of DEFB4 through the activation of NF-κB 
signaling pathway  [66].  Recent studies reported that 
1,25(OH)2D3 enhances the IL-1β production in macrophages 
infected with M. tuberculosis and induces the expression of 
DEFB4, which kills intracellular mycobacteria [65, 67, 68]. In 
contrary to CAMP and defensin, the anti-microbial protein 
hepcidin (HAMP) favour the survival as well as the growth of 
M. tuberculosis in macrophages by suppressing the 
ferroportin-mediated export of cellular iron, an essential 
mineral required for bacterial growth [69, 70]. It has been shown 
that 1,25(OH)2D3 downregulates HAMP in hepatocytes and 
monocytes and decreases the availability of iron for 
intracellular bacteria [71]. This study suggests that 
1,25(OH)2D3 control intracellular growth of mycobacteria by 
regulating the iron concentration inside the macrophages.  

Vitamin D and autophagy 

Autophagy is a process of lysosomal self digestion, 
essential for cellular homeostasis and plays a significant role 
in the control of intracellular infection. Autophagy functions 
as an intracellular innate defence mechanism where 
phagosome containing intracellular pathogen fuses with 
lysosome and undergoes degradation [72]. Intracellular bacteria 
such as M. tuberculosis inhibits the phagosome fusion with 
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lysosome thus survive inside the macrophages [73]. Vitamin D 
sufficiency is a critical factor to activate autophagy pathways. 
It has been shown that vitamin D sufficiency is a very 
important factor for IFN-γ induced antimicrobial activities 
such as phagosome maturation, antimicrobial peptide 
synthesis and autophagy induction in macrophages [37]. It is 
demonstrated that 1,25(OH)2D3-mediated production of 
hCAP18 upregulates the expression of autophagy-related 
genes such as Atg5 and Beclin-1 in monocytes/macrophages 
and enhances the fusion of phagosome containing M. 
tuberculosis with lysosome [59].  Similarly, another study has 
reported that mycobacterial lipoprotein LpqH stimulates the 
synthesis of 1,25(OH)2D3 and production of cathelicidin as 
well as autophagy induction through the activation of TLR2/1 
signalling in monocytes [74]. A recent study revealed that 
1,25(OH)2D3 induces autophagy in human immunodeficiency 
virus-1 (HIV-1) infected macrophages by upregulating the 
expression of  Atg5 and Beclin-1 through the activation of  
phosphatidylinositol 3-kinase signaling pathways [75]. Further, 
1,25(OH)2D3 mediated cathelicidin production act as a crucial 
factor for autophagic flux, which reduces the survival of M. 
tuberculosis and HIV replication in macrophages [76]. The 
bacterial degradation product following autophagy is loaded 
on the MHC class II molecule, which may help to develop 
efficient adaptive immunity by stimulating CD4+ cell 
response against pathogens [77]. These studies suggest that 
1,25(OH)2D3 help to remove pathogen mediated block in 
phagosome-lysosome fusion by activating autophagy 
pathways in macrophages and play a potent role in the control 
of intracellular growth of M. tuberculosis. 

Vitamin D and antigen presentation  

Based on the interaction between macrophages with 
specific cytokines, macrophages are classified into two groups 
such as classically activated macrophages (CAMs) and 
alternatively activated macrophages (AAMs) [78, 79]. CAMs 
interact with IFN-γ and TNF-α and mediate more efficient 
antigen presentation as well as release of pro-inflammatory 
mediators. [79]. AAMs are generated by Th2 cytokines such as 
IL-4 and IL-13 [80] and are less efficient antigen presenting 
cells due to reduced MHC class II expression and mediate 
anti-inflammatory response by producing IL-10 and TGF-β 
[78, 79, 81]. Antigen presenting cells such as macrophages are the 
principal target for 1,25(OH)2D3 mediated actions. 
1,25(OH)2D3 suppresses the antigen-presenting capacity of 
monocytes and macrophages by downregulating the 
expression of MHC class II and co-stimulatory molecules 
such as CD40, CD80 and CD86 and inhibits the T cell 
activation [27]. It has been shown that 1,25(OH)2D3 
downregulate the differentiation of monocytes into dendritic 
cells and its maturation [25, 82]. A recent clinical study revealed 
that nutritional supplementation of vitamin D enhanced the 

antigen presenting potential of monocytes of TB contacts; 
however, a similar result was not observed in active TB 
patients [83]. 

Effect of vitamin D on inflammatory responses 

The pro-inflammatory and anti-inflammatory functions of 
macrophages are determined by the interactions with Th1 or 
Th2 cytokines. During infection, various pro-inflammatory 
cytokines such as IL-1, IL-6, TNF-α, IL-8, IL-12 and IFN-γ 
are produced by macrophages and T-cells. These cytokines 
activate macrophages to eliminate the intracellular pathogen 
and enhance Th1 and Th17 immune responses against M. 
tuberculosis [84, 85]. It has been shown that 1,25(OH)2D3 
suppresses the production of pro-inflammatory cytokines such 
as IL-1, IL-6, TNF-α, IL-8, IL-12 and IFN-γ by upregulating 
the expression of MAPK phosphatase-1 (MKP-1) and IκBα, 
which inhibit the nuclear factor-kappa B (NF-κB) activity in 
monocytes/ macrophages [86-90], whereas it upregulates the 
expression of anti-inflammatory cytokine IL-10 [91] and may 
enhance the emergence of anti-inflammatory alternatively 
activated macrophages. It has been reported that M. 
tuberculosis infected macrophages enhance the expression of 
chemokines such as monocyte chemoattractant protein-1 
(MCP-1), macrophage inflammatory protein-1α (MIP-1α), 
MIP-1β and regulated upon activation, normal T-cell 
expressed and secreted (RANTES), monokine induced by 
interferon-γ (MIG) and interferon gamma inducible 
protein-10 (IP-10) [92,93], that are involved in the recruitment 
of immune cells at the site of infection and granuloma 
formation in tuberculosis. However, it is reported that 
1,25(OH)2D3 treatment diminished the M. tuberculosis culture 
filtrate antigen stimulated MIG and IP-10 chemokine mRNA 
expression in monocytes/macrophages cultures [93] and this 
decreased expression could be due to 1,25(OH)2D3 mediated 
downregulation of IFN-γ production. In addition, it is 
demonstrated that 1,25(OH)2D3 also suppresses the expression 
of matrix metalloproteinase-7 (MMP-7), MMP-9 and 
MMP-10 in monocytes [91] that might aid to reduce the 
pathogen-mediated tissue injury and inflammation. 

Conclusion 

1,25-dihydroxyvitamin D3 regulates immune functions of 
macrophages through binding with vitamin D receptor. The 
anti-microbial functions of macrophages such as 
phagocytosis, production of reactive oxygen/nitrogen 
intermediates, antimicrobial peptide synthesis and autophagy 
has been upregulated by 1,25(OH)2D3 thus help to inhibit the 
growth of intracellular mycobacteria. In addition, 
1,25(OH)2D3 also suppresses the macrophage inflammatory 
response by downregulating the production of 
pro-inflammatory cytokines and chemokines. This suggests 
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that adjunct vitamin D supplementation along with a standard 
TB regime could enhance the innate immune functions of the 
macrophage and accelerate the early resumption from the 
active disease. 
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