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Background. The role of drug concentrations in clinical outcomes in children with tuberculosis is unclear. Target concentrations

for dose optimization are unknown.

Methods. Plasma drug concentrations measured in Indian children with tuberculosis were modeled using compartmental phar

macokinetic analyses. The children were followed until end of therapy to ascertain therapy failure or death. An ensemble of artificial

intelligence algorithms, including random forests, was used to identify predictors of clinical outcome from among 30 clinical, lab

oratory, and pharmacokinetic variables.

Results. Among the 143 children with known outcomes, there was high between-child variability of isoniazid, rifampin, and

pyrazinamide concentrations: 110 (77%) completed therapy, 24 (17%) failed therapy, and 9 (6%) died. The main predictors of ther

apy failure or death were a pyrazinamide peak concentration <38.10 mg/L and rifampin peak concentration <3.01 mg/L. The relative

risk of these poor outcomes below these peak concentration thresholds was 3.64 (95% confidence interval [CI], 2.28-5.83). Isoniazid

had concentration-dependent antagonism with rifampin and pyrazinamide, with an adjusted odds ratio for therapy failure of 3.00

(95% CI, 2.08-4.33) in antagonism concentration range. In regard to death alone as an outcome, the same drug concentrations, plus z

scores (indicators of malnutrition), and age <3 years, were highly ranked predictors. In children <3 years old, isoniazid 0- to 24-hour

area under the concentration-time curve <11.95 mg/L x hour and/or rifampin peak <3.10 mg/L were the best predictors of therapy
failure, with relative risk of 3.43 (95% CI, .99-11.82).

Conclusions. We have identified new antibiotic target concentrations, which are potential biomarkers associated with treatment
failure and death in children with tuberculosis.

Keywords, childhood tuberculosis; boosted classification and regression tree analyses; random forests; pharmacokinetic variabil

ity; drug concentration thresholds.

Tuberculosis affects >1 million children, and kills >140 000 of Antibiotics must reach each of the infected sites in children to

them, each year. In contrast to adult tuberculosis, in which exert effect [2-5]. This presents a therapeutic challenge in extrap

>85% of patients manifest pulmonary disease that is predomi- olating from the treatment of adults with a regimen designed for

nantly cavitary in nature [1], children are more likely to have drug penetration into the lung cavity, and activity against extra -

noncavitary pulmonary tuberculosis and extrapulmonary dis- cellular bacilli, to the treatment of disseminated tuberculosis, and

ease, involving a number of different anatomic sites. The cavitary even noncavitary pulmonary tuberculosis in children, in which

pulmonary lesion presents specific barriers to therapeutics that the infecting bacilli are predominantly intracellular [4]. Further

differ from those in noncavitary pulmonary or disseminated tu- more, the paucibacillary and often extrapulmonary nature of

berculosis or tuberculosis restricted to extrapulmonary sites. childhood tuberculosis complicates diagnosis and risk stratifica

tion of patients, as sputum smears and cultures are traditionally

used to diagnose tuberculosis and monitor response to treatment.
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Tuberculosis affects >1 million children, and kills >140 000 of

them, each year. In contrast to adult tuberculosis, in which

>85% of patients manifest pulmonary disease that is predomi

nantly cavitary in nature [1], children are more likely to have

noncavitary pulmonary tuberculosis and extrapulmonary dis

ease, involving a number of different anatomic sites. The cavitary

pulmonary lesion presents specific barriers to therapeutics that

differ from those in noncavitary pulmonary or disseminated tu

berculosis or tuberculosis restricted to extrapulmonary sites.
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Antibiotics must reach each of the infected sites in children to

exert effect [2-5]. This presents a therapeutic challenge in extrap

olating from the treatment of adults with a regimen designed for

drug penetration into the lung cavity, and activity against extra

cellular bacilli, to the treatment of disseminated tuberculosis, and

even noncavitary pulmonary tuberculosis in children, in which

the infecting bacilli are predominantly intracellular [4], Further

more, the paucibacillary and often extrapulmonary nature of

childhood tuberculosis complicates diagnosis and risk stratifica

tion of patients, as sputum smears and cultures are traditionally

used to diagnose tuberculosis and monitor response to treatment.

These differences in the tuberculosis pathology in toddlers and

babies compared with adult-type disease suggest that factors

driving outcome may differ between children and adults [6].

Recently, there have been welcome efforts to design new

doses and formulations of first-line antituberculosis drugs for

children [1, 4, 5, 7]. New rifampin, isoniazid, pyrazinamide,

and ethambutol doses have been proposed for use in children

by the World Health Organization [8], These recommendations

© The Author 2016.
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have relied on the logic that optimal concentrations for treat

ment of tuberculosis in adults will be the same as those in chil

dren. However, optimal drug concentrations in adults still

remain poorly defined. Commonly used targets for therapeutic

drug monitoring (eg, 2-hour postdose concentrations of 3 mg/L for

isoniazid, 8 mg/L for rifampin, and 20 mg/L for pyrazinamide)

were derived from normal distributions in healthy volunteer adults

and selected US adult patients receiving standard doses on the basis

that they are predictably tolerated and expected to be efficacious [9,

10]. Here, we used a more agnostic and unbiased approach to iden

tify threshold concentrations most predictive of clinical outcomes

for both extrapulmonary and pulmonary tuberculosis in children,

especially in toddlers and babies. We included 30 potential predic

tors, including patients' routinely collected clinical characteristics,

measures of nutritional status, and drug pharmacokinetic measures

(eg, peak concentration ["peak"], and 0- to 24-hour area under the

concentration-time curve [AUC0_24]), in machine learning algo

rithms. We used classification and regression tree (CART) analyses,

boosted CART (TreeNet), and random forests to rank and identify

the best predictors of outcome, as well as their cutoff values, in chil

dren with tuberculosis.

METHODS

Setting

Children were recruited from 6 separate tertiary institutions in

Chennai, Madurai, Bengaluru, and Agra, in India. Ethical ap

proval was obtained from all relevant institutional review

boards. This was a noninterventional study.

Type of Study

The study was a prospective pharmacokinetic and pharmacody

namic study of an intermittent (thrice-weekly) regimen of first

line antituberculosis drugs in children. All children received

supervised directly observed therapy at Revised National Tuber

culosis Control Program (RNTCP) treatment centers. All doses

were directly observed by healthcare workers and for those
children who missed some doses but did not meet threshold

for default (ie, missing >2 consecutive months' worth of doses),
those missed doses were added at the end of 2 months or end of

treatment after 6 months. Noncompartmental pharmacokinetic

analyses for the 3 drugs, and impact of nutrition on outcomes

for this study, have been published elsewhere [11-13]. Malnutri

tion was defined as weight-for-height, weight-for-age, or height

for-age z scores < -2 or >2. Here, compartmental pharmacokinetic

analyses were performed for each drug for each child to identify

their potential role in outcomes.

Treatment Regimens and Dosing

Diagnosis, initiation of therapy, clinical assessments on follow-up,

and final evaluation at end of therapy were performed by special

ist pediatricians at each institution according to RNTCP recom

mendations [8,14]. The treatment regimens were according to

category. Treatment category I comprised rifampin, isoniazid,

pyrazinamide, and ethambutol and was given to new smear-pos

itive cases or those with advanced disease, whereas category III
did not include ethambutol and was reserved for less severe

smear-negative tuberculosis. Category II included streptomycin

plus ethambutol added to rifampin, isoniazid, and pyrazinamide

during the intensive phase of therapy, after which the continua

tion phase was prolonged by a month. Category II therapy was

given to children who had taken treatment for at least 4 weeks

and had had treatment interruption plus active disease. Drug

doses were based on body weight: 10 mg/kg for rifampin and iso

niazid, 30-35 mg/kg for pyrazinamide, and 30 mg/kg for etham

butol. Whereas the entire therapy was intermittent in most

instances, seriously ill children who were admitted were given

daily supervised therapy during their stay in hospital. Fixed

dose combinations were given in blister packs according to weight

bands of 4-6 kg, 7-10 kg, 11-14 kg, 15-19 kg, 20-24 kg, and

>25 kg. Human immunodeficiency virus (HlV)-infected chil

dren were treated with a regimen of efavirenz and lamivudine

plus either stavudine or zidovudine or tenofovir or abacavir [15].

Definition of Terms and Treatment Outcomes

The following standard terms were used to define tuberculosis

disease site and clinical outcomes at end of therapy [14,15]. The

diagnosis of pediatric extrapulmonary tuberculosis was made

on the basis recommended by RNTCP (http://tbcindia.nic.in/

showfile.php?lid=2904). Radiological changes highly suggestive

of intrathoracic tuberculosis such as hilar/paratracheal lymph

adenitis with or without parenchymal lesion, miliary tuberculo

sis, or fibrocavitary pneumonia were designated as pulmonary

tuberculosis. Completed treatment was reserved for children

who attained bactériologie cure or completed assigned therapy
and did not demonstrate residual disease based on clinical as

sessments (weight gain, regression of fever). Failure was used

to define children who deteriorated based on clinical (persistent

fever, failure to thrive or weight loss) or radiological examina

tion while on antituberculosis therapy, and the clinician would

proceed to change treatments. Death while on therapy was also

recorded as a separate outcome. We defined poor outcome as

either therapy failure or death.

Pharmacokinetic Sampling

During the intensive phase of therapy, after at least 2 weeks on

therapy, children were admitted to hospital for serial blood sam

pling for pharmacokinetic analyses. The study doses were admin

istered by the study team after an overnight fast. Serial collection

of 2 mL of blood predose and at 2,4,6, and 8 hours postdose was

performed. Plasma drug concentrations were determined using

well-described and validated methods [16,17]. The assays were

linear within the following ranges: 0.25-10.0 pg/mL for isoniazid,

0.25-15 ug/mL for rifampin, and 1.25-50.0 pg/mL for pyrazina

mide in plasma. The within-day and between-day relative stan

dard deviation for all drug standards were <10%. The average

recoveries of isoniazid, rifampin, and pyrazinamide from plasma
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were 104%, 104% and 102%, respectively. All other assay char

acteristics have been described in detail in prior publications

[16.17],

Pharmacokinetic Modeling

All 805 concentrations of isoniazid, 795 of rifampin, and 720 of pyr

azinamide were modeled in ADAPT software for each drug sepa

rately. We did not a priori assume the number of compartments

for each drug. Instead, we analyzed each drug using 1-compartment

and 2-compartment models, with first-order input and elimination.

We used a 2-step approach: first, single 2-stage estimation to identify

initial estimates for the Fortran model and parameter files, followed

by a second analysis with maximum-likelihood solution via the ex

pectation-maximization (MLEM) algorithm [6]. The best model

was chosen from the MLEM output by comparing Akaike informa

tion criterion (AIC), Bayesian information criterion (BIC), and

parsimony.

CART, Boosted CART (TreeNet), and Random Forests

We used CART, boosted CART, and random forest for variable se

lection because they have been successfully used in the past to solve

"small n, large P' problems [18-20]. These artificial intelligence al

gorithms were developed by Breiman and Cutler in the late 1990s to

improve model prediction accuracy using enhanced computing

power. Pharmacokinetic/pharmacodynamic datasets like the current

one are highly dimensional, and have repeated and correlated mea

sures so that in some way they are "big data" from relatively fewer

patients. A 3-step approach was used to identify and rank predictors

of poor outcomes in children, as well as to identify the thresholds for

those predictors, using both random forests and CART because of

the unique attributes of each. First, we implemented random forests

and boosted CART to identify and rank the most important vari

ables predictive of outcomes. In both CART and random forests,

variable importance measures were computed to assess the rele
vance of each variable in the model over all trees of the ensemble.

Weighted mean "simple" improvement in the splitting criterion or

improvement in the Gini gain was incorporated into computing the

variable importance score [18,21], Two computer-generated vari

ables, a positive and negative control, were included in the initial

ran. The positive control comprised numbers deliberately made to

correlate 100% with outcome, while the negative control con

sisted of random generated numbers. The 30 potential predic

tors examined in the model were: age, sex, weight, height, body

mass index, body surface area, height-for-age z score, weight

for-age z score, height-for-weight z score, HIV infection result,

disease site, treatment category, rifampin dose, isoniazid dose,

pyrazinamide dose, negative and positive control variables,

and the drug pharmacokinetic measurements, including the

2-hour, peak, trough, AUC0_24> and time to peak concentra

tion for each drug. We then selected the top half (ie, 15 ranked

variables and their scores) for each model based on the area

under the receiver operating characteristic (ROC) curve

value and prediction success rate. For the former, a cutoff

Patients enrolled in study N = 161
girls 40(43%),boys 91(57%)

Started treatment N = 161
Initial treatment-Category I 114(71%)
Retreatment-Category II 14(9%)
Initial treatment-Category III 33(20%)

Pharmacokinetic sampling N = 161
(at steady-state concentration)

Clinical evaluatio
(variable therapy di

ri at end of therapy
j ration)

Clinical outcomes
evaluated 143(89%)
Treatment cat 1 99(69%)
Treatment cat II 14(10%)
Treatment cat III 30(21%)

Clinical outcomes
not evaluated
(lost to follow-up) 18(11%)
Treatment cat I (83%)
Treatment cat II 0

Treatment cat III 3(17%)

Figure 1. Study enrollment. Chart showing enrollment of study subjects, pharmacokinetic sampling, and evaluation for clinical outcomes at end of therapy.
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value of 0.70 was arbitrarily applied, whereas the latter was

tuned by varying the class weights so that a penalty of between

10% and 50% was applied for misclassifying death or failure of

therapy. We used posttest or cross-validated values to limit

overfit. All model building was examined for parsimony.

Second, we ran separate boosted CART models using only the

significant predictors identified earlier. The purpose was to identify

thresholds predictive of therapy failure, death, and the combined

poor outcomes conditional on the ranking in importance and
identified thresholds for the other covariates. Thresholds were ob

tained from the optimal tree. In addition, partial dependence plots

were generated to give a graphical depiction of the marginal impact
of 1 variable or the interaction of 2 variables on outcomes.

Third, to put the results in frequentist statistical perspective,

more familiar to most clinicians, we took the predictors and thresh

olds identified by the 2 steps above and then computed relative risk

and adjusted odds ratio from multivariate logistic regression plus

their 95% confidence intervals (CIs). Additionally, we examined

the utility of using the identified thresholds as biomarkers of out

comes by computing their sensitivity and specificity. Multivariate

logistic regression analyses were performed with AIC, BIC, and
ROC used for model selection with several biomarkers included

in separate models. Adjusted odds ratios are reported.

Software

Compartmental pharmacokinetic models for each drug were

identified using ADAPT 5 (Biomedical Simulations Resource,

University of Southern California). CART, gradient-boosted

CART in TreeNet, and random forests were run using Salford

Systems Data Mining and Predictive Analytics Software version

8.0 (Salford Systems, San Diego, California). Standard statistical

analyses were performed with Stata software version 13 (StataCorp,

College Station, Texas).

RESULTS

Clinical and Pharmacokinetic Factors of Participants

One hundred sixty-one children aged 1-15 years were enrolled

(Figure 1). Fifty-seven percent of children had only extrapulmo

nary tuberculosis. Eighteen (11%) children did not have outcome
known or ascertained. Table 1 summarizes the clinical and demo

graphic factors in all 161 children, and compares those with ascer
tained outcomes to those with unknown outcomes. Table 1 shows

that children with unknown outcomes were similar to those with

known outcomes. The exception was that HIV-coinfected chil

dren were overrepresented among those with known outcomes.

Isoniazid pharmacokinetics were best explained by a

2-compartment model, whereas rifampin and pyrazinamide

concentrations were best explained by a 1-compartment

model. The pharmacokinetic parameter estimates are shown

in Table 2. The distributions of AUC0-24> peak, and trough, as

well as time to peak concentration, are shown in Figure 2. The

ratio of highest to lowest (ie, span) peak and AUC0_24 for ri

fampin was 69.47 and 1674, for pyrazinamide 9.64 and 9.13,

Table 1. Demographic and Clinical Characteristics of Study Patients

All Patients Clinical Outcomes Clinical Outcomes
Characteristic (N = 161) Evaluated (n = 143) Not Evaluated (n = 18) P Value
Demographic featuresGirls 70 (43) 62 (43) 8 (44) .930Boys 91(57) 81(57) 10(55)Age, years 7.81 (3.35) 7.86 (3.35) 7.42 (3.40) .601
Clinical features

Extrapulmonary tuberculosis 91(57) 79(55) 12(67) .606Pulmonary tuberculosis 68 (42) 62 (43) 6 (33)
Extrapulmonary plus pulmonary tuberculosis 2(1) 2(2) 0 .308Treatment category I 114(71) 99(69) 15(83)Treatment category II 14(9) 14(10) 0Treatment category III 33(20) 30(21) 3(17)HIV test positive 77(48) 73(51) 4(22) .021HIV test negative 84 (52) 70 (49) 14 (78)
Isoniazid/rifampin mean dose, mg (SD)b 173(67) 172(65) 183(86) .495
Pyrazinamide mean dose, mg (SD) 582(217) 578(208) 611(287) .548

Measures of nutritional status

Mean weight, kg (SD) 18.45(6.60) 18.55(6.66) 17.65(6.16) .586
Mean height, cm (SD) 112.39(19) 112.46(18.71) 111.78(21.76) .886
Mean body mass index, kg/rn2 (SD) 14.30(2.27) 14.36(2.30) 13.81(1.97) .337
Mean body surface area, m2 (SD) 0.75(0.19) 0.76(0.19) 0.74(0.20) .669

All Patients Clinical Outcomes Clinical Outcomes
Characteristic (N = 161) Evaluated (n = 143) Not Evaluated (n = 18) P Value8
Demographic featuresGirls 70 (43) 62 (43) 8 (44) .930Boys 91(57) 81(57) 10(55)Age, years 7.81 (3.35) 7.86 (3.35) 7.42 (3.40) .601
Clinical features

Extrapulmonary tuberculosis 91(57) 79(55) 12(67) .606Pulmonary tuberculosis 68 (42) 62 (43) 6 (33)
Extrapulmonary plus pulmonary tuberculosis 2(1) 2(2) 0 .308Treatment category I 114 (71) 99 (69) 15 (83)Treatment category II 14(9) 14(10) 0Treatment category III 33(20) 30(21) 3(17)HIV test positive 77(48) 73(51) 4(22) .021HIV test negative 84 (52) 70 (49) 14 (78)
Isoniazid/rifampin mean dose, mg (SD)b 173(67) 172(65) 183(86) .495
Pyrazinamide mean dose, mg (SD) 582(217) 578(208) 611(287) .548

Measures of nutritional status

Mean weight, kg (SD) 18.45(6.60) 18.55(6.66) 17.65(6.16) .586
Mean height, cm (SD) 112.39(19) 112.46(18.71) 111.78(21.76) .886
Mean body mass index, kg/rn2 (SD) 14.30(2.27) 14.36(2.30) 13.81(1.97) .337
Mean body surface area, m2 (SD) 0.75(0.19) 0.76(0.19) 0.74(0.20) .669

Data are presented as No. (%) unless otherwise indicated.

Abbreviations: HIV, human immunodeficiency virus; SD, standard deviation.

a Indicates P-values < .05.

b Given as a combined tablet.
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Table 2. Pharmacokinetic Parameter Estimates of Antituberculosis Drugs in 161 Children

Parameter

Isoniazid Rifampin Pyrazinamide

Mean SD as %CV Mean SD as %CV Mean SD as %CV

Total clearance, L x h~1 7.8 67.8 11.0 130 1.3 41.9

Central compartment volume, L 5.2 34.3 21.8 17.0 12.8 48.4

Absorption constant, h"1 0.8 64.8 1.1 126 2.5 77.2

Intercompartmental clearance, L x IT1 15.4 16.9

Peripheral compartment volume, L 7.5 21.0

Half-life, h 1.7 48.2 2.3 88.12 7.8 50.35

Abbreviations: . . not applicable fora 1-compartment model; CV, coefficient of variation; SD, standard deviation.

Parameter

Isoniazid Rifampin Pyrazinamide

Mean SD as %CV Mean SD as %CV Mean SD as %CV

Total clearance, L x h~1 7.8 67.8 11.0 130 1.3 41.9

Central compartment volume, L 5.2 34.3 21.8 17.0 12.8 48.4

Absorption constant, h"1 0.8 64.8 1.1 126 2.5 77.2

Intercompartmental clearance, L x IT1 15.4 16.9

Peripheral compartment volume, L 7.5 21.0

Half-life, h 1.7 48.2 2.3 88.12 7.8 50.35

and for isoniazid 12.42 and 36.19, respectively. The trough

concentrations were dominated by zero values, making it im

possible to calculate ratios; however, the ranges were 0-5.03

mg/L for rifampin, 0-6.09 for isoniazid, and 0-30.24 for pyr

azinamide. Thus, there was wide between-child concentration

variability. Figure 2D shows that the calculated times to peak

concentration rarely fell at the 2-hour time point, which

means the 2-hour systematically underestimates the peak
concentration.

Outcomes Ascertained at End of Therapy

Subsequent analyses were restricted to the 143 patients with

known outcomes. A single outcome was unique to each

child. One hundred ten (77%) children completed adequate
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therapy, 9 (6%) died, and 24 (17%) failed therapy. There was

no significant difference (P = .738) in poor outcomes between
those who received re-treatment because of initial default or

prior treatment (ie, received category II regimen) and those

who received category I/II (4/10 [40%] vs 29/129 [22%],

respectively).

Factors Associated With Outcome Based on Standard Statistical

Inferences

Table 3 shows the factors that were associated with poor out

comes, based on standard statistical approaches of comparing

measures of central tendency. However, in standard multivar

iate analyses, none of the factors remained significant inde

pendent predictors of poor outcomes, suggesting presence

of interaction or confounding effects. On the other hand, drug

concentrations were significantly associated with outcome. How

ever, the logistic regression assumptions precluded us from

examining all 3 drug-concentration measures in the same

model concurrently. In addition, this analytical approach could

not be employed to rank the most important factors, nor obtain

concentration thresholds associated with poor outcomes, impor

tant for clinical and drug development decision making; all it gave

were comparisons of measures of central tendency.

Machine Learning Analyses of Outcomes in All Children

Random forests and boosted CART analyses identified our posi

tive control variable as the primary predictor and also identified

that the random number-generated parameter was not an impor

tant predictor for poor outcomes. The ROC score for all models

examined was >0.75, which is reassuring. This was objective evi

dence that our analytic approach correctly selected predictors. The

top half most important predictors for poor outcome for all 143
children are shown in Table 4. The ROC curve was 0.75 for the

out-of-bag sample in random forests and 0.77 for test sample in

Table 3. Children Who Failed Therapy or Died Versus Completed Therapy in Standard Statistical Analysis

Characteristic All Children (n = 143) Completed Treatment (n = 110) Failed Treatment (n = 24) Died (n = 9)

Girls 62 (43) 46 (42) 11 (46) 5 (56) .701

Boys 81 (87) 64 (58) 13 (54) 4 (54)

Age, years 7.86 (3.35) 7.85 (3.30) 7.15 (3.70) 9.78 (2.54) .110

Clinical

Extrapulmonary 79 (55) 64 (58) 14 (58) 1 (11) .023

Pulmonary and extrapulmonary 64 (45) 46 (42) 10 (42) 8(89)

Treatment category I 99 (69) 76 (69) 17 (71) 6(67) .090

Treatment category II 14 (10) 10 (9) 1 (4) 3 (33)

Treatment category III 30 (21) 24 (22) 6(25) 0

HIV test positive 73 (51) 55 (50) 10(42) 8 (89) .049

HIV test negative 70 (49) 55 (50) 14 (58) 1 (11)

Isoniazid/rifampin dose, mg 172 (65) 178 (61)a 144 (73)B 169 (78) .079

Pyrazinamide dose, mg 578 (208) 600 (190)b 475 (248)b 583 (250) .022

Measures of nutritional status

Mean weight, kg (SD) 18.55 (6.66) 18.75 (6.84) 17.74 (6.77) 18.33 (4.21) .796

Mean height, cm (SD) 112 (19) 113 (18) 109 (20) 120 (19) .368

Mean height-for-weight z score (SD) -1.16 (1.35) -1.15 (1.28) -1.19 (1.61) -1.23 (1.70) .989

Mean height-for-age z score (SD) -2.19 (1.80) -2.17 (1.84) -2.00 (1.35) -2.94(2.41) .399

Mean weight-for-age z score (SD) -2.11 (1.16) -2.07 (1.16) -2.11 (1.14) -2.61 (1.17) .409

Mean BMI, kg/m2 (SD) 14.36 (2.30) 14.45 (2.29) 14.36 (2.04) 13.21 (3.58) .296

Mean BSA, m2 (SD) 0.76 (0.19) 0.76 (0.20) 0.73 (0.20) 0.78 (0.14) .727

Mean measures of drug exposures (SD)

Isoniazid

Peak, mg/L 5.58 (2.66) 5.76 (2.66)° 4.42 (2.64)c 6.42 (2.02) .049

AUCo-24, mg/L x h 24.77 (16.03) 25.41 (15.94)d 17.23 (11,47)d 37.02 (19.48) .004

Rifampin

Peak, mg/L 4.37 (2.48) 4.75 (2.41 )e 3.08 (2.45)e 3.03 (1.70) .003

AUCo-24, mg/L x h 22.81 (17.85) 24.71 (18.11) 18.63 (15.92) 9.32 (12.53) .027

Pyrazinamide

Peak, mg/L 38.43 (13.32) 39.85 (12.73)f 30.80 (11.37)' 44.05 (17.45) .004

AUCo-24, mg/L x h 421.54 (192.46) 438.11 (145.49)9 343.52 (163.35)9 456.48 (192.46) .022

Data are presented as No. (%) unless otherwise indicated.

Italics values represent P-values <.05.

Abbreviations: AUCo-24, 24-hour area under the concentration-time curve; BMI, body mass index; BSA, body surface area; HIV, human immunodeficiency virus; SD, standard deviation.

Between-group comparison: aP= .055; bP= .022; CP= .073; dP= .062; eP= .007; fP= .008; 9P= .023.

Characteristic All Children (n = 143) Completed Treatment (n = 110) Failed Treatment (n = 24) Died (n = 9) P Value

Demographic

Girls 62 (43) 46 (42) 11 (46) 5 (56) .701

Boys 81 (87) 64 (58) 13 (54) 4 (54)

Age, years 7.86 (3.35) 7.85 (3.30) 7.15 (3.70) 9.78 (2.54) .110

Clinical

Extrapulmonary 79 (55) 64 (58) 14 (58) 1 (11) .023

Pulmonary and extrapulmonary 64 (45) 46 (42) 10 (42) 8(89)

Treatment category I 99 (69) 76 (69) 17 (71) 6(67) .090

Treatment category II 14 (10) 10 (9) 1 (4) 3 (33)

Treatment category III 30 (21) 24 (22) 6(25) 0

HIV test positive 73 (51) 55 (50) 10 (42) 8 (89) .049

HIV test negative 70 (49) 55 (50) 14 (58) 1 (11)

Isoniazid/rifampin dose, mg 172 (65) 178 (61)" 144 (73)" 169 (78) .079

Pyrazinamide dose, mg 578 (208) 600 (190)b 475 (248)b 583 (250) .022

Measures of nutritional status

Mean weight, kg (SD) 18.55 (6.66) 18.75 (6.84) 17.74 (6.77) 18.33 (4.21) .796

Mean height, cm (SD) 112 (19) 113 (18) 109 (20) 120 (19) .368

Mean height-for-weight z score (SD) -1.16 (1.35) -1.15 (1.28) -1.19 (1.61) -1.23 (1.70) .989

Mean height-for-age z score (SD) -2.19 (1.80) -2.17 (1.84) -2.00 (1.35) -2.94 (2.41) .399

Mean weight-for-age z score (SD) -2.11 (1.16) -2.07 (1.16) -2.11 (1.14) -2.61 (1.17) .409

Mean BMI, kg/m2 (SD) 14.36 (2.30) 14.45 (2.29) 14.36 (2.04) 13.21 (3.58) .296

Mean BSA, m2 (SD) 0.76 (0.19) 0.76 (0.20) 0.73 (0.20) 0.78 (0.14) .727

Mean measures of drug exposures (SD)

Isoniazid

Peak, mg/L 5.58 (2.66) 5.76 (2.66)° 4.42 (2.64)c 6.42 (2.02) .049
AUCo-24, mg/L x h 24.77(16.03) 25.41 (15.94)d 17.23 (11,47)d 37.02(19.48) .004
Rifampin

Peak, mg/L 4.37(2.48) 4.75(2.41)" 3.08(2.45)" 3.03(1.70) .003
AUCo-24, mg/L x h 22.81(17.85) 24.71(18.11) 18.63(15.92) 9.32(12.53) .027
Pyrazinamide

Peak, mg/L 38.43(13.32) 39.85(12.73)' 30.80(11.37)' 44.05(17.45) .004
AUCo-24, mg/L x h 421.54(192.46) 438.11 (145.49)9 343.52 (163.35)9 456.48(192.46) .022
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Table 4. Top Half Predictors for Poor Clinical Outcomes Based on Boosted Classification and Regression Tree (TreeNet) and Random Forest Models

TreeNet Random Forests
Variable Rank Score Rank Rank Score

Pyrazinamide peak 1 100 Pyrazinamide peak 1 100

Rifampin peak 2 81 Rifampin AUC0-24 2 61

Rifampin time-to-peak 3 57 Rifampin peak 3 59

Rifampin AUC0-24 4 53 Pyrazinamide AUC0-24 4 54

Pyrazinamide AUCo_24 5 49 Rifampin time-to-peak 5 26

Height 6 45 Isoniazid time-to-peak 6 22

Pyrazinamide time-to-peak 7 44 Isoniazid AUCo_24 7 21

Isoniazid AUC0-24 8 44 Pyrazinamide time-to-peak 8 21

Isoniazid time-to-peak 9 43 Rifampin-isoniazid dose 9 19

Disease site 10 41 Isoniazid peak 10 19

Weight-for-age z score 11 35 Height-for-age z score 11 18

Age 12 35 Weight-for-height z score 12 17

Height-for-age z score 13 35 Height (m) 13 15

Isoniazid peak 14 31 Weight-for-age z score 14 14

Gender 15 30 Pyrazinamide dose 15 13

Abbreviation: AUC0-24, 24-hour area under the concentration-time curve.

TreeNet Random Forests
Variable Rank Score Rank Rank Score

Pyrazinamide peak 1 100 Pyrazinamide peak 1 100

Rifampin peak 2 81 Rifampin AUC0-24 2 61

Rifampin time-to-peak 3 57 Rifampin peak 3 59

Rifampin AUC0-24 4 53 Pyrazinamide AUC0-24 4 54

Pyrazinamide AUCo_24 5 49 Rifampin time-to-peak 5 26

Height 6 45 Isoniazid time-to-peak 6 22

Pyrazinamide time-to-peak 7 44 Isoniazid AUCo_24 7 21

Isoniazid AUC0-24 8 44 Pyrazinamide time-to-peak 8 21

Isoniazid time-to-peak 9 43 Rifampin-isoniazid dose 9 19

Disease site 10 41 Isoniazid peak 10 19

Weight-for-age z score 11 35 Height-for-age z score 11 18

Age 12 35 Weight-for-height z score 12 17

Height-for-age z score 13 35 Height (m) 13 15

Isoniazid peak 14 31 Weight-for-age z score 14 14

Gender 15 30 Pyrazinamide dose 15 13

boosted CART. Both modeling approaches identified pyrazina

mide peak concentration at the apex followed closely by rifampin

AUC0_24> and peak concentration. Each of the z scores was within

5% points of each other, suggesting that one could be substituted

for the other. Treatment category was not a significant predictor

identified by either model. The difference in the value of the var

iable importance scores and ranking between the 2 models could

be explained by their different approach to handling wide data

(random forests) vs highly correlated variables (boosted CART).

Thus, the ranking and scores from the 2 models in Table 4 repre

sent different but important aspects about those predictors, which

we further explored.

Concentration Thresholds Associated With Poor Outcome

Next we used boosted CART models that included only ranked var

iables from Table 4 to identify drug concentration thresholds pre

dictive of poor outcomes including failure of therapy. Figure 3

shows that when all 143 children were included, pyrazinamide

peak <38.10 mg/L was identified as the main predictor for the

All children No.(%)
(excluding those who failed)

Poor outcomes 33(23)
Completed treatment 110(77)
Total 143(100)

PZA peak £38.10

Poor outcomes 25(36)
Completed treatment 44(64)Total 69(100)

Poor outcomes 8(11)
Completed treatment 66(89)Total 74(100)

RIF peak £6.20 RIF peak >6.20
Poor outcomes 25(40) —J— Poor outcomes 0
Completed treatment 38(60) Completed treatment 6(100)Total 63(100)J Total 6(100)

INH AUC £31.80
>

Poor outcomes 19(33)
Completed treatment 38(67)
Total 57(100)

RIF AUC £2.63

Poor outcomes 4(100)
Completed treatment 0Total 4(100)

RIF AUC >2.63

Poor outcomes 4(6)
Completed treatment 66(94)
Total 70(100)

RIF peak £3.10

Poor outcomes 15(45)
Completed treatment 18(55)
Total 33(100)

INH AUC >31.80

Poor outcomes 6(100)
Completed treatment 0

Total 6(100)

RIF peak >3.10

Poor outcomes 4(17)
Completed treatment 20(83)
Total 24(100)

All children No.(%)
(excluding those who failed)

Poor outcomes 33(23)
Completed treatment 110(77)
Total 143(100)

PZA peak £38.10

Poor outcomes 25(36)
Completed treatment 44(64)Total 69(100)v

PZA peak >38.10

Poor outcomes 8(11)
Completed treatment 66(89)Total 74(100)

RIF peak £6.20 RIF peak >6.20
Poor outcomes 25(40) —J— Poor outcomes 0
Completed treatment 38(60) Completed treatment 6(100)Total 63(100)J Total 6(100)

INH AUC £31.80

Poor outcomes 19(33)
Completed treatment 38(67)
Total 57(100)

RIF AUC £2.63

Poor outcomes 4(100)
Completed treatment 0Total 4(100)

RIF AUC >2.63

Poor outcomes 4(6)
Completed treatment 66(94)
Total 70(100)

RIF peak <3.10

Poor outcomes 15(45)
Completed treatment 18(55)
Total 33(100)

INH AUC >31.80

Poor outcomes 6(100)
Completed treatment 0

Total 6(100)

RIF peak >3.10

Poor outcomes 4(17)
Completed treatment 20(83)
Total 24(100)

Figure 3. Classification and regression tree (CART)—derived predictors of combined poor outcomes in all 143 children. CART tree from the optimal model for all children with

combined poor outcomes (failure of therapy or death). Terminal nodes are shaped as sharp-edged rectangles; intermediate daughter nodes have rounded edges. Nodes shaded

in light gray indicate antagonism where higher drug concentration led to higher proportions with poorer outcomes than lower drug concentrations. Abbreviations: AUC, area

under the concentration-time curve; INH, isoniazid; PZA, pyrazinamide; RIF, rifampin.
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PZA <38.10

Failed 20(31)
Completed 45(69)
Total 65(100)

RIF peak <3.01

Failed 15(45)
Completed 18(55)
Total 33(100)

All children No.(%)
(excluding those who died)

Failed 24(18)
Completed 110(82)
Total 132(100)

PZA peak >38.10

Failed 4(6)
Completed 65(96)
Total 69(100)

RIF peak >3.01

Failed 5(16)
Completed 27(84)
Total 32(100)

INH peak <4.77

Failed 0
Completed 19(100)
Total 19(100)

INH peak >4.77

Failed 5(39)
Completed 8(61)
Total 13(100)

Figure 4. Predictors for failure of therapy in 134 children. Classification and regression tree (CART)~derived predictors of therapy failure only, excluding the 9 children who

died. Abbreviations: INH, isoniazid; PZA, pyrazinamide; RIF, rifampin.

All children No.(%)
(excluding those who failed)

Died 9(8)
Completed 110(82)
Total 119(100)

r rif AUC <3.70

Died 5(39)
Completed 8(61)

^Total 13(100)

PZA peak <37.49

Died 3(8)
Completed 36(92)
Total 39(100)

V.

INH peak <4.29

Died 0
Completed 23(100)
Total 23(100)

RIF AUC >3.70

Died 4(4)
Completed 102(96)
Total 106(100)

/ *
PZA peak <37.49

Died 1(2)
Completed 66(98)
Total 67(100)

INH peak >4.29

Died 3(19)
Completed 13(81)
Total 16(100)

Figure 5. Predictors of death in 119 children with tuberculosis. Classification and regression tree (CART)—derived predictors of death, excluding the 24 children who failed

therapy. The CART tree was shallow, and identified 2 concentration-dependent predictors of death. Abbreviations: AUC, area under the concentration-time curve; INH, isoniazid;

PZA, pyrazinamide; RIF, rifampin.
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composite poor outcome, followed by rifampin AUC0_24 in those

with pyrazinamide peak >38.10 mg/L and rifampin peak in those

below the pyrazinamide threshold. The relative risk of poor out

comes below these peak concentration thresholds was 3.64 (95%

CI, 2.28-5.83). Figure 3 shows that there was significant concentra

tion-dependent antagonism driven by isoniazid. In children with

pyrazinamide peak <38.10 and rifampin peak <6.20 mg/L, isonia

zid AUCo-24 >31.80 mg/L x h led to significantly higher propor

tions of children with poor outcomes (6/6 [100%] vs 19/57

[33%] with isoniazid <31.80 mg/L), which is a risk ratio for failure

of 3.00 (95% CI, 2.08-4.33).

Figure 4 shows results for the 134 children remaining after

excluding 9 children who died (ie, therapy failure alone). The

primary node was still pyrazinamide peak <38.10 mg/L. How

ever, the daughter node threshold of rifampin peak was 3.01

mg/L. The isoniazid concentration-dependent antagonism

was still evident among those with lower pyrazinamide peaks,

this time at isoniazid peak concentration >4.77 mg/L.

Figure 5 shows the most important predictors of death

alone in 119 children after therapy failure was excluded

from analysis. The most highly ranked predictors of death

were rifampin AUC0_24 <3.70 at the apex with a score of

100%, followed by pyrazinamide peak <37.49 mg/L with a

score of 88%. The isoniazid peak <4.29 mg/L score was
49%, while that for the AUC0_24 was 35%; however, for both

parameters higher isoniazid concentration selected nodes with

greater proportions of dead children, and in unpruned trees

were ranked even higher. In other words, there was concentra

tion-dependent antagonism that manifest in higher death

rates. Figure 5 shows that 19% in the antagonism zone died

compared to 0% of children (P = .061). Even though the ma

jority (8/9) of children who died had HIV infection, 5 of 9 also

had pyrazinamide peak concentrations below threshold prior

to death. Indeed, in both boosted CART and random forests,

drug concentration outranked HIV test results in separate

analyses.

Machine Learning Analyses of Clinical Outcomes in Babies and

Toddlers

Age <3 years was a significant predictor of outcome (Table 4).

There were no deaths observed in this age group, but 7 of 18

(39%) failed therapy. Therefore, predictors of therapy failure

in children <3 years old were separately examined using

CART, with results shown in Figure 6. The ROC for the test

model was 89%, suggesting that the results would be highly re

producible in a separate sample. The primary node was isoni

azid AUCo-24 < 11.95 mg/L x h, followed closely by rifampin

peak <3.10 mg/L. The relative risk for therapy failure was
3.43 (95% CI, .99-11.82).

Sensitivity and Specificity of Identified Thresholds as Biomarkers

Finally, we used standard statistical analyses to examine

the impact of identified thresholds for decision making in
the clinic, with results shown in Table 5. In all 143 children,

for each 2-fold increase in pyrazinamide dose between 250

mg and 750 mg (which would increase proportions achiev

ing threshold AUC0_24), combined poor outcome fell by

43% (95% CI, 7%—66%) and failure of therapy fell by 54%

(95% CI, 17%-75%). The multivariate logistic regression

model in Table 5 reveals that isoniazid peak concentrations

between 4.55 and 7.50 mg/L were associated with combined

poor outcomes, indicative of antagonism (adjusted odds
ratio, 3.08 [95% CI, .91-10.45]). The model was robust,
with an ROC of 0.89. On the other hand, in children <3

years old, the relative risk for failure of therapy for those

children with isoniazid AUC0_24 < 11.95 mg/L x h was 5.73
(95% CI, .91-35.93).

The identified rifampin, isoniazid, and pyrazinamide thresh

olds were used as biomarkers for poor outcome to reveal sensi

tivity and specificity results (Table 6). When pyrazinamide peak

threshold <38.10 and rifampin peak <3.20 mg/L were used to

screen for children who failed therapy, the specificity increased

from 0.68 to 0.89 (Table 6).

Children <3 years old, No. (%)

Failed therapy 7 (39%)
Completed therapy 11 (61%)Total 18 (100)

INH AUC <11.95

Failed therapy 6 (75%)

INH AUC >11.95

Failed therapy 1 (10%)
Completed therapy 2 (25%) Completed therapy 9 (90%)Total 8 (100%) Total 10 (100%)

Children <3 years old, No. (%)

Failed therapy 7 (39%)
Completed therapy 11 (61%)Total 18 (100)

INH AUC <11.95

Failed therapy 6 (75%)

INH AUC >11.95

Failed therapy 1 (10%)
Completed therapy 2 (25%) Completed therapy 9 (90%)Total 8 (100%) Total 10 (100%)

Figure 6. Classification and regression tree (CART) model of predictors of therapy failure in babies and toddlers. The optimal model and variable importance ranking together

with the scores for children <3 years old with failure of therapy. Terminal nodes are shaped as sharp-edged rectangles; intermediate daughter nodes have rounded edges.

Abbreviations: AUC, area under the concentration-time curve; INH, isoniazid.
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Table 5. Multivariate Logistic Regression Analysis of the Factors
Associated With Poor Outcomes in All 143 Children

No. of Adjusted OR
Variable Concentration Patients (95% CI)
Pyrazinamide peak, mg/L <38.10 55 (43) Referent

>38.10 72 (57) .15 (.05-50) .002

Rifampin peak, mg/L <3.02 50 (36) Referent

3.02-6.20 57 (40) .19 (.06- 56) .003

>6.20 34 (24) .10 (.02- 55) .008

Isoniazid peak, mg/L <4.55 61 (43) Referent

4.55-7.50 43 (30) 3.08 (.91-10.45) .071

>7.50 39 (27) 2.83 (.53-14.95) .222

No. of Adjusted OR
Variable Concentration Patients (95% CI) P Value

Pyrazinamide peak, mg/L <38.10 55 (43) Referent

>38.10 72 (57) .15 (.05-50) .002

Rifampin peak, mg/L <3.02 50 (36) Referent

3.02-6.20 57 (40) .19 (.06- 56) .003

>6.20 34 (24) .10 (.02- 55) .008

Isoniazid peak, mg/L <4.55 61 (43) Referent

4.55-7.50 43 (30) 3.08 (.91-10.45) .071

>7.50 39 (27) 2.83 (.53-14.95) .222

Italics values represent P-values <.05.

Abbreviations: CI, confidence interval; OR, odds ratio.

DISCUSSION

Standard statistical inferences are excellent for hypothesis test

ing, and in clinical sciences have the underlying assumption

that the population studied is a good representation sample of

the total population. With these standard approaches, we com

pare distributions and the measures of central tendency be

tween groups, and use the P value to make sure that the

differences observed are not due to chance. The underlying sci

entific philosophy is rejection of the null hypothesis. Machine

learning algorithms, on the other hand, are governed by an en

tirely different philosophy [20,22], First, their main objective is

prediction. Thus, they are not for hypothesis testing, but rather

for hypothesis generation. The algorithms determine how likely

the prediction is to be true or hold with different datasets. Once

the hypothesis has been generated, it can be tested using

standard statistical inferences. Second, these algorithms are dis

tribution free. Third, the algorithms use nonparametric regres

sion. Fourth, they simultaneously examine both linear and

nonlinear analyses, as well as higher-order interactions between

predictors and between predictors and the target response.

Fifth, they are designed for pattern recognition, a difficult con

cept for standard statistical inferences. Here, we innovated an

extra step to these algorithms, positive and negative controls

("known knowns"), in order to increase confidence in the iden

tification of new predictors (the "unknown unknowns"). Ran

dom forest employs entropy and stochastic algorithm searches

for each node and uses each separate variable to build trees, and

allows the trees generated to vote and identify the best tree,

which was useful for our wide data [19, 20], On the other

hand, boosted CART handles correlated variables better by in

corporating both additive and interaction effects. Using both,

findings from patients' data were ranked and thresholds identi

fied, in a manner that allows straightforward clinical decision

making. This allowed us to examine and rank all potential pre

dictors without us prespecifying and biasing the importance

with our favorite potential predictors, allowing us to accurately

follow bread crumb trails home in a terrifying forest of many

potential clinical, demographic, laboratory, and pharmacoki

netic predictors [23].

(Jur hrst major finding was that pharmacokinetic variability

is likely to be an important driver of therapy failure and death in

children with tuberculosis [24, 25], While the dosing schedule

was based on intermittent therapy, the finding still remains

and would be independent of that. There was a wide range of

between-child variability in the absorption constant, systemic

clearance, and volume of distribution. This, and the current

dosing structure with weight bands, led to a wide variability

in AUCo-24 an<i peak concentrations in children on standard

doses. This between-patient variability led to some patients hav

ing low drug concentrations, and those low concentrations were

the highest-ranked predictors of therapy failure and death,

accounting for 5 of 6 (83%) children <3 years old who failed

therapy and 25 of 33 (76%) children who either failed therapy
or died.

Second, we identified drug concentration thresholds predic

tive of poor outcomes. This means that there are specific drug
concentrations and thresholds above which children are more

likely to do well on therapy. These thresholds should be valid

targets for developing optimal dosing for children. We previ

ously observed that pyrazinamide concentrations, followed by

Table 6. Sensitivity and Specificity of Drug Concentration Thresholds in All Children and in Children Aged <3 Years

No. of Sensitivity, Specificity, PPV, % NPV, % Likelihood
Biomarker Test Specifics Patients (%) % (95% CI) % (95% CI) (95% CI) (95% CI) Ratio P Value
All children

Pyrazinamide peak <38.10 mg/L 127(89) 76(58-89) 68(58-77) 45(32-59) 89(79-95) 2.374 <.001
Pyrazinamide peak <38.10 mg/L plus rifampin 143(100) 52(34-69) 89(82-94) 59(39-76) 86(78-92) 4.722 <.001

peak <3.20 mg/L

Children <3 y old

Isoniazid AUCo-24 < 11.95 mg/L x h 18(13) 86(42-100) 82(48-98) 75(35-97) 90(56-100) 4.714 .041
Isoniazid AUCo-24 threshold plus rifampin peak <3.10 mg/L 18(13) 86(42-100) 75(35-97) 75(35-97) 86(42-100) 3.429 .041

Italics values represent P-values <.05.

Abbreviations: AUCo-24, 24-hour area under the concentration time curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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rifampin concentrations, and then isoniazid concentrations

were the best predictors of sputum culture conversion and

long-term outcome in South African adults with tuberculosis.

The pyrazinamide peak concentration threshold of >38.10

mg/L identified here in Indian children differed somewhat

from that of 58.3 mg/L that we identified as the most important

predictor of sputum culture conversion in adult pulmonary tu

berculosis, but it remains roughly double the 20 mg/L 2-hour

postdose concentration currently used to design doses for chil

dren. On the other hand, the rifampin peak >6.20 mg/L we

identified as a predictor of improved outcome in children

with lower pyrazinamide peaks is very close to the 6.60 mg/L

threshold we identified as a predictor of favorable long-term

outcome in adult pulmonary disease [6]. However, the isoniazid

AUC0_24 of 11.95 mg x h/L we identified as the most important

predictor of outcome for children <3 years of age differs more

from the value of 52 mg x h/L that we identified as a predictor

of long-term outcome in adult pulmonary tuberculosis. The

reasons are unclear, but could reflect differences in the patho

physiology of tuberculosis between adults and children, result

ing in different drug partitioning between plasma and the site of

infection and/or different contributions of individual compo

nent drugs to the overall activity of the regimen. In contrast,

the pharmacokinetic/pharmacodynamic drivers (ie, pattern)

appear remarkably concordant with the indices shown to

drive outcomes in mice, the hollow fiber system model, and

adult patients [5, 26].

Last, we îaentmea a negative interaction between îsomazid

and its companion agents, pyrazinamide and rifampin. This

concentration-dependent antagonism has been described in
murine tuberculosis, in the hollow fiber model, and in the ster

ilizing effects of the regimen on sputum cultures from adults

with tuberculosis [5,27-29], We found that the antagonism oc

curred within certain concentration ranges. This perhaps points

to the major limitation of extrapolating optimal pediatric doses

from adult disease. In this case, that practice gave us doses

whose resultant concentrations fall squarely in that zone of con

centration-dependent antagonism, which was associated with

higher death rates in children. It also illustrates another point,

which is that optimal design of combination therapy must in

corporate knowledge of full exposure-response surfaces for in

teractions of multiple paired concentrations to select doses that

best avoid areas of antagonism [30-32],

There are several limitations to our findings. First, our models

ranked and predicted important variables based on routinely

collected data. This means that it cannot be excluded that unre

corded variables, outside the 30 potential predictors we exam

ined, could also explain therapy failure and possibly be ranked

highly. Second, typical of most pediatric tuberculosis, we did

not isolate the infecting pathogen, which means that the role

of minimum inhibitory concentration could not be investigated.

For the same reasons, the impact of drug concentrations on

acquired drug resistance was not examined. Moreover, therapy

failure was not microbiologically defined, but was based on

broad and perhaps more subjective clinical criteria. Third, a cu

rious observation was that category assignment (ie, initial treat

ment compared to retreatment) did not contribute to significant

difference in outcomes, either based on standard statistical anal

yses or artificial intelligence methods. Fourth, the incidence of

HIV in this cohort was higher than is expected in the majority

of Indian children with tuberculosis. However, this could be

more consistent with the observation that places where recruit

ment took place are specialty care institutions, which could have

skewed the population enrolled. We suspect that this would also

explain the relatively higher proportion of children with extrap

ulmonary tuberculosis and low rate of bacteriologically con

firmed tuberculosis. Thus, it is possible that some of these
children did not have tuberculosis, were treated for tuberculosis,

and did not get better—leading to a diagnosis of tuberculosis treat

ment failure. Finally, the impact of concomitant antiretroviral

therapy in driving the variability of antituberculosis drugs could

not be assessed directly because we did not measure antiretroviral

drug concentrations. Nevertheless, HIV coinfection itself was not

highly ranked as a predictor of therapy outcome. These limita

tions, which will need to be investigated in the future, however,

do not deter conclusions from our findings.
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