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The hall mark of human immunodeficiency virus (HIV) infection is a gradual loss of 
CD4+ T-cells and imbalance in CD4+ T-cell homeostasis, with progressive impairment 
of immunity that leads ultimately to death. HIV infection in humans is caused by two 
related yet distinct viruses: HIV-1 and HIV-2. HIV-2 is typically less virulent than HIV-1 
and permits the host to mount a more effective and sustained T-cell immunity. Although 
both infections manifest the same clinical spectrum, the much lower rate of CD4+ T-cell 
decline and slower progression of disease in HIV-2 infected individuals have grabbed the 
attention of several researchers. Here, we review the most recent findings on the differ-
ential rate of decline of CD4+ T-cell in HIV-1 and HIV-2 infections and provide plausible 
reasons for the observed differences between the two groups.
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inTRODUCTiOn

Acquired immune deficiency syndrome (AIDS) is one of the most devastating infectious diseases 
affecting humankind, with an estimated 36.7 million people living with human immunodeficiency 
virus (HIV) infection as per 2015 estimates (1). Although the majority of this infection is caused by 
HIV-1, a closely related viral strain, HIV-2 that is believed to have spread in parallel with HIV-1 is also 
an etiological agent of this dreadful infection. The two viruses share striking similarities in genetic 
and biological properties, such as genome structure and mechanisms for transactivation and CD4+ 
cell depletion, and yet, HIV-2 exhibits much longer clinical latency periods, significantly lower rates 
of disease progression and transmission and lower viral load in the asymptomatic phase as compared 
to HIV-1 infection (2, 3). The distinct differences in pathogenicity provide a unique opportunity to 
look for protective viral and host immune mechanisms that contribute to viral control.

A significant amount of research has recently been focused on identifying causal factors for the 
difference in pathogenicity between the two infections in the hope of obtaining clues that could 
ultimately lead to a sustainable cure in some way. In this context, considerable amount of attention 
has been paid to understand the hallmark feature of HIV infection, i.e., progressive depletion of 
CD4 lymphocytes, and its distinct regulation in HIV-infected individuals in whom infection never 
progresses to AIDS or progresses very slowly. While in the case of HIV-1 infection there is a steady 
decline in CD4+ T-cell count, in HIV-2 infection, the decline is much slower and viremia levels are 
lower at any stage of the disease (4–6). In this article, we review the distinct pathological differences 
between HIV-1 and HIV-2 infections in the perspective of differential rate of CD4+ T-cell decline 
and provide plausible reasons for the observed differences.
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DePLeTiOn OF CD4+ T-CeLL—A KeY 
evenT in Hiv DiSeASe PROGReSSiOn

CD4+ T-cells are the central mediators of immune response in 
humans, crucially coordinating cellular and humoral immune 
responses against infections. Very early studies on subjects with 
AIDS documented lymphopenia, low lymphocyte proliferative 
responses after stimulation with antigens, and an inversion in the 
ratio of helper T-cells to cytotoxic T-cells (7–9). Further studies in 
this line confirmed that HIV selectively infects CD4+ T-cells and 
destroys them for its own benefits (10). Later, it was shown that 
suppressing HIV replication with antiretroviral therapy (ART) 
rapidly increased peripheral blood CD4+ T-cell counts and 
reversed immunodeficiency (11, 12). Now, most researchers agree 
that HIV majorly infects CD4+ T-cells and leads to progressive 
loss of the cells from circulation and from the total body stores.

Upon in  vitro infection with HIV, productive infection of 
CD4+ T-cells takes place and leads to either cell lysis or giant cell/ 
syncytia formation, in which both infected and uninfected cells 
fuse, leading to spread of infection (10). Animal models of SIV 
infection also documented severe depletion of CD4+ T-cells in 
the gut-associated lymphoid tissue (GALT), which is the major 
producer of CD4+ T-cells in the body (13). Subsequent studies 
provided evidence that the same phenomenon of depletion of 
GALT CD4 reservoirs occurs in human HIV infection as well 
(13). Quantitative estimates of absolute CD4+ T-cell count and 
percentage have been shown to correlate strongly with the pro-
gression of disease. A normal adult harbors about 22 × 1011 CD4+ 
T-cells (14), whereas in the HIV-infected individual, this number 
is halved by the time the peripheral blood CD4+ T-cell count falls 
to 200 cells/microliter of blood (14, 15). In more advanced disease, 
destruction of parenchymal lymphoid spaces is so extensive that 
enumeration of the total body CD4+ T-cell count cannot even be 
attempted. Since HIV induces both quantitative and qualitative 
defects in the CD4+ T-cell compartment, numbers of circulating 
CD4+ T-cells in HIV+ subjects have been the most widely used 
tool for predicting the onset of overt immunodeficiency and the 
best surrogate marker for monitoring severity of the disease (16).

COnTRiBUTORS TO CD4+  
T-CeLL DePLeTiOn

CD4+ T-cells are known to be the central facilitators for both 
cellular and humoral immune responses against exogenous anti-
gens and are kept constant in the human body by homeostatic 
mechanisms (17, 18).HIV binds to the CD4 molecule on the sur-
face of helper T-cells and replicates within them. This results in 
destruction of CD4+ T-cells and leads to a steady decline in this 
population of T-cells. The definition of progressive and slow loss 
of CD4+ T-cells is not clear. In order to understand the correlation 
between CD4+ T-cell depletion and immunopathogenesis, and 
its relationship with disease progression, a number of dynamic 
models have been put forward. Two of the most acknowledged 
mechanisms are discussed in detail in this review. These include 
direct virus attack leading to cytolytic effect and chronic immune 
activation resulting in apoptosis.

Direct Attack by Hiv
Several studies carried out in the late 1980s and early 1990s 
provided support for the hypothesis of “accelerated destruction” 
of CD4+ T-cells by viral attack. This hypothesis received indirect 
experimental validation from Ho and colleagues (19, 20), who 
proposed “the tap and drain hypothesis” for the slow depletion 
of CD4 cells. According to this theory, there is a homeostatic 
response by which the loss of CD4+ T-cells due to HIV infection 
(the drain) is comfortably counteracted by production of T-cells 
(a wide open tap); however, this balance is ultimately disrupted 
once the production of T-cells in response to homeostasis is 
exhausted. This has been substantiated by quantitative image 
analysis of decreased numbers of CD4+ T-cells and increased 
levels of cellular proliferation and apoptosis in HIV-infected 
individuals (21, 22).

Given the fact that HIV infection accelerates both the produc-
tion and the destruction of CD4+ T-cells, in the early stages of the 
infection, there is constant replacement of dying CD4+ T-cells with 
native CD4+ T-cells originating from the thymus (21). It is reported 
that during the course of HIV infection, about 1 billion of HIV 
particles are produced per day, resulting in increasing numbers of 
infected CD4+ T-cells (21, 23). Subsequently, infection spreads to 
the memory cells in the thymus and the virus starts to replicate there. 
Each time a memory CD4+ T-cell is infected by HIV, it is destined 
to undergo the process of elimination, thus contributing to the 
progressive decline in CD4+ T-cell numbers (22). Analysis of T-cell 
turnover in humans with HIV infection suggests that the fraction 
of dividing CD4+ T-cells in untreated HIV disease can be elevated 
two- to threefold (24, 25), with most proliferation concentrated in 
the CD45RO+ memory/effector population of CD4+ T-cells (26). 
While direct viral killing/cytolysis of CD4 T-cells partly clarifies 
the cause of depletion of CD4+ T-cells, the loss of uninfected CD4 
cells and naïve CD8 cells during the asymptomatic phase of HIV 
infection cannot be explained by this hypothesis. Taken together, 
these observations suggest that AIDS pathogenesis cannot solely 
be explained by the direct viral killing hypothesis.

Chronic immune Activation
Another dynamic model that emerged to explain the pathogenesis 
of AIDS and accompanying CD4 depletion is the “hyper immune 
activation hypothesis,” which suggests that there is a high rate 
of cell division among the CD4+ and CD8+ T-cell, NK  cell, 
and B cell populations during the course of HIV infection and 
an associated upregulation of activation markers (27). Several 
studies have demonstrated that the level of immune activation 
in HIV-infected subjects is a better predictor of disease progres-
sion than the levels of virus replication (28, 29). Hyperimmune 
activation induces increased cell division in memory T-cells 
and increases their capacity for self-renewal, thereby leading to 
increased cell counts. To explain “depletion by activation,” Yates 
et al. proposed that the activated CD4+ T-cells have a very short 
life span and are lost rather quickly due to activation-induced cell 
death or apoptosis(30). Labeling studies have shown evidence of 
increased turnover of naïve T-cells in HIV infection. This is also 
supported by the dilution of excision circles of the T-cell receptor 
(31). Thus, chronic immune activation better explains immune 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


3

Vidya Vijayan et al. CD4+ T-Cell Depletion in HIV-2 Infection

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 580

deficiency among HIV-infected individuals, and the level of 
activation predicts disease progression in HIV-infected subjects 
better than viral replication-driven pathogenesis (32–34).

Investigation on HIV infection has shown that immune system 
remains in a hyperactive state characterized by high T-cell turno-
ver, non-specific T-cell activation and proliferation, polyclonal 
activation of B  cells, and elevated proinflammatory cytokines 
(35). Thus, HIV makes its own target and increases replication 
through immune activation. HIV infection activates the immune 
system through the viral gene products Nef, Tat, Vpr, and Vpu (30, 
36) and also through production of inflammatory cytokines (37). 
For instance, Nef and Vpr are involved in stimulating monocytes 
and macrophage cells (37). Likewise, plasmacytoid dendritic cells 
(DCs) are induced by HIV RNA; they interact with the pattern 
recognition receptors such as toll-like receptor (TLR)-7 and 
TLR-9 and induce the production of interferon (IFN)-α (38). In 
addition, the presence of HIV DNA in the cytoplasm itself leads to 
the activation of caspase-1 and to the release of proinflammatory 
cytokines including interleukin (IL)-1β (38). Thus, even abortive 
HIV-1 infection, if it results in the presence of viral DNA in the 
cytoplasm of target cells, could induce immune activation.

immune Activation and inflammation
In general, HIV-associated chronic immune activation is charac-
terized by high levels of circulating proinflammatory cytokines 
and chemokines, including type I IFNs, IL-6, TGFβ, IL-8, IL-1α, 
IL-1β, MIP-1α, MIP-1β, and RANTES (39, 40). Plasma proteins 
such as neopterin, β2-microglobulin (β2M), TNF-α, soluble 
TNFRII, soluble IL-2R, and IFN-γ are documented to be increased 
even in the early stages of infection (34, 40). Many other proteins, 
including anti-inflammatory cytokines IL-10 and TGF-β1 and 
IFN-inducible protein-10 (IP-10), have also been shown to be 
increased in the plasma during acute infection and are reported 
to be predictive of rapid disease progression (41). Thus, massive 
increase of cytokine release, called cytokine storm, characterizes 
acute and chronic HIV infection and contributes to predict the 
immune activation and CD4+ T-cell depletion. Persistent immune 
activation also prevents the establishment of IL-2-producing 
memory CD4+ and CD8+ T-cells (42), and this has deleterious 
effects on HIV-specific CD4+ T-cell immunity (43).

During early infection, the virus primarily disturbs the 
mucosal immune function. Loss of integrity of the gastrointesti-
nal mucosa and microbial translocation contribute to induction 
of local inflammation and HIV-associated chronic immune 
activation, which in turn are associated with disease progression 
and CD4+ T-cell depletion (44). Several studies have shown that 
poorly controlled translocation of immunostimulatory micro-
bial products occurs in HIV-infected individuals. Through the 
stimulation of several TLRs, these microbial products activate 
various immune cell types and induce production of proinflam-
matory cytokines, such as TNF-α, IL-6, IL-1β, and type I IFNs 
(44–46). These responses significantly contribute to the aberrant 
immune activation in chronic HIV infection. The breach of 
the gut system has been shown to correlate well with the level 
of immune activation and depletion of CD4+ Th17 cells, a cell 
type that is normally abundant in the mucosa and is known to be 
involved in immunity to commensal bacteria (47). The selective 

loss of Th17 CD4+ T-cells from the gut possibly due to selective 
infection has therefore been held responsible for the long-term 
loss of the intestinal integrity and thereby for chronic immune 
activation in pathogenic HIV infection (47–49). In short, HIV 
infection is characterized by massive production of proinflam-
matory cytokines (48, 49), which in turn leads to clonal deletion 
(49) and gradual loss of peripheral CD4+ T-cells over time (50).

Pyroptosis and Apoptosis
It has been known for some time now that apoptosis is a major 
factor contributing to T-cell depletion, mediated by caspase-3, in 
T-cells that are permissive to infection by HIV. However, there are 
subsets of T-cells (abortive T-cells) that are non-permissive and 
do not support HIV replication. In this subset of cells, cell death 
occurs through a process called pyroptosis, driven by caspase-1 
(51). Pyroptosis is a highly inflammatory form of programmed cell 
death in which the dying cell releases all its cytoplasmic contents, 
including inflammatory cytokines; these cytokines in turn trigger 
pyroptosis in other T-cells as part of a vicious cycle of abortive T-cell 
depletion (52). Recent studies by Doitsh et al. showed that depletion 
of T-cells and subsequent progression of disease occur not only 
through apoptosis but also through pyroptosis (51). In a subsequent 
study, the same group of investigators showed that only 5% of CD4+ 
T-cell depletion occurs through apoptosis, while the remaining 95% 
of quiescent lymphoid CD4+ T-cells die by caspase-1-mediated 
pyroptosis triggered by abortive viral infection (51, 52). Pyroptosis 
thus links the two signature events in HIV infection—CD4+ T-cell 
depletion and chronic inflammation—and creates a pathogenic 
vicious cycle in which dying CD4+ T-cells release inflammatory 
signals that stimulate more cells to die. Thus, it establishes a state 
of chronic inflammation that eventually fuels disease progression.

Regulatory T-Cells (Treg)
CD4+ Treg gained prominence recently. These cells play a vital role 
in T-cell homeostasis and limiting of immunopathology through 
the suppression of specific T-cell responses such as activation, 
proliferation, and effector function (53). A study undertaken by 
Foxall et al. in 2011 demonstrated that CD4 depletion is associated 
with relative expansion of Treg cells, irrespective of the presence 
or absence of circulating virus, leading to better preservation of 
circulating naive and memory Treg cells as compared to other 
CD4+ T-cell subsets in HIV/AIDS (54). Increased frequency 
of CD4+ T-cells expressing CD25 has been observed in HIV-2-
infected individuals, independent of the degree of CD4 depletion 
and levels of immune activation. CD4+CD25+ T-cells, a subset 
that expresses the highest level of the lineage regulatory marker 
FoxP3, are proposed to play a significant role in models of experi-
mental chronic infection by contributing to suppression of T-cell 
responses (55). On the other hand, CD4+ T-cells expressing an 
intermediate intensity of CD25 are characterized by an increased 
ability to produce IL-2 and lack other regulatory markers. The 
expansion of this population of cells is not seen in HIV-1 infec-
tion. The presence of higher levels of these cells in HIV-2-infected 
individuals may point to an improved ability to replenish their 
CD4 memory pool and to the lower virulence of HIV-2 infection 
as compared to that of HIV-1. Furthermore, the Treg cell popula-
tion can be subdivided into CD45RA+ (naïve-resting cells) and 
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TABLe 1 | Comparison of Hiv-1 and Hiv-2 infection.

Human immunodeficiency virus (Hiv)-1 Hiv-2

epidemiological and clinical significance between Hiv-1 and Hiv-2 infection

Geographical distribution Global Confined to West Africa with limited spread; also reported in 
former Portuguese colonies, such as Angola, Mozambique, 
and Brazil, and in parts of India

Heterosexual transmission Sexual mode of transmission is higher Fivefold lower rate than HIV-1

Vertical transmission Mother to child transmission is higher 20- to 30-fold lower rate than HIV-1

Duration of asymptomatic stage Time to develop acquired immune deficiency syndrome 
(AIDS) varies, ranging from a few months to many years, with 
an estimated median time of 9.8 years

Longer duration, ranging from 10–25 years

Clinical illness If untreated, around half of people infected with HIV-1 will 
develop AIDS within 10 years

86–95% of people infected with HIV-2 are long-term 
non-progressors

Proviral DNA load Similar Similar

Plasma RNA load Higher Significantly lower than HIV-1

Viral replication kinetics Higher replication and 100-fold more fit Transient replication and less fit

Infectivity and transmission fitness Similar and 100-fold more fit Similar and less fit

Co-receptor usage Uses CXCR4 and CCR5 Uses a range of co-receptors, including CCR1, CCR2, CCR3, 
CXCR6, BOB, CCR5, and CXCR4

CD4+ T-cell responses between Hiv-1 and Hiv-2 infection

CD4+ T-cell count Lower compared to HIV-2 with undetectable viral load but 
similar to HIV-2 with higher viral load

Higher in HIV-2 with undetectable viral load and similar to  
HIV-1 with higher viral load

CD4+ T-cell response Lesser proliferative capacity and polyfunctionality, and 
increased differentiation 

Better proliferative capacity, more polyfunctionality, and lesser 
differentiation

Thymic function HIV-1 can replicate efficiently in thymus tissue. No correlation 
with the rate of CD4+ T-cell loss

HIV-2 is able to infect the human thymus, but this is associated 
with limited viral replication. Correlates with lower rates of  
CD4+ T-cell

Production of cytokines Interleukin (IL)-2- and IL-4-producing cells decline as disease 
progresses

IL-2- and IL-4-producing cells better preserved. Expressions of 
both IL-2- and IFN-γ-producing cells are more

CD57−CD4+ T-cell expression Less frequently seen More CD57− cells are seen

CD4+ T-cell activation level Positive correlation between lipopolysaccharide (LPS) level 
and proinflammatory cytokines IL-12 and IFN-γ

Negative correlation between LPS level and proinflammatory 
cytokines in HIV-2 individuals with undetectable VL

Susceptibility to the SAMHD1 Myeloid cells are refractory to viral infection Presence of Vpx permits viral infection of myeloid cells through 
degradation of SAMHD1

Immune activation and T-cell apoptosis Higher immune activation and more apoptosis Less immune activation and less T-cell apoptosis

Nef Does not downmodulate the TCR–CD3 complex Downregulates the TCR–CD3 complex
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CD45RA− (memory-activated cells). The majority of Tregs in the 
HIV-2-infected individuals have been observed to lack CD45RA 
expression, thus implying that most of the Tregs in these individuals 
belong to the memory-activated phenotype. These findings further 
support a close link between CD4 depletion and immune activa-
tion. Thus, it is plausible that Tregs also have a role in the slower rate 
of disease progression associated with HIV-2 infection (54, 56).

DiSTinGUiSHinG FeATUReS OF CD4+ 
T-CeLL DePLeTiOn in Hiv-1 AnD Hiv-2 
inFeCTiOnS

One of the best ways of elucidating the intriguing nature of 
immunopathogenesis of HIV infection is studying naturally 
occurring HIV infection with different clinical outcomes. HIV-2 
infection provides an ideal situation for this investigation as 

it has a lower degree of pathogenicity as compared to HIV-1. 
Although HIV-2 also eventually causes immunodeficiency 
syndrome indistinguishable from HIV-1-induced AIDS (57, 
58), many HIV-2-infected individuals do not develop immuno-
deficiency during their lifetime and retain stable CD4+ T lym-
phocyte counts and low levels of viremia for many years (4–6). 
This striking difference has prompted the search for the reason 
for variations in T-cell homeostasis and imbalances in cytokine 
production and identification of factors that contribute to an 
effective immune response that delays progression of disease 
during infection.

One of the major aspect of CD4+ T-cell depletion and its 
associated immunopathology that distinguishes between HIV-1 
and HIV-2 infections is immune activation (59), which is a strong 
predictor of disease progression HIV infection (60). One of the key 
drivers for immune activation during chronic HIV-1 and HIV-2 
infection is the breach of the gastrointestinal tract, resulting in 
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translocation of bacterial lipopolysaccharide (LPS) into the blood 
(28, 34). LPS is a known activator of innate immune cells via TLR-
4, and LPS concentrations in the circulation of HIV-infected indi-
viduals correlated strongly with T-cell activation levels (61, 62). 
A study by Nowroozalizadeh et al. showed an inverse correlation 
between plasma LPS levels and expression of proinflammatory 
cytokines IL-12 and IFN-γ following TLR stimulation in HIV-2-
infected, HAART-naïve individuals, whereas in HIV-2-infected 
individuals with AIDS, there was a positive correlation between 
LPS levels, CD4+ T-cell lymphopenia, and HIV RNA load similar 
to HIV-1 infection (63).

The viral proteins Nef, Env, and Tat also play a part in immune 
activation. In HIV-2 infection, intracellular Nef promotes the 
downregulation of the T-cell receptor complex in CD4+ T-cells, 
whereas in HIV-1 infection, Nef seems to have lost its ability 
to downmodulate the expression of CD3–TCR complex on the 
surface of infected T-cells (64). As a consequence, HIV-1 Nef may 
directly contribute to immune activation by rendering infected 
CD4+ T-cells highly sensitive to restimulation through the 
T-cell receptor. In contrast, the low level of immune activation in  
HIV-2-infected individuals with low virus replication may pre-
vent the shift in T-cell function and phenotype in chronic infec-
tion. Studies have also shown that low levels of circulating virus 
lead to low levels of activation of CD4 and CD8 cells; gag mRNA 
level has been found to correlate with CD4+ T-cell activation and 
tat mRNA with CD8+ T-cell activation (65, 66). Studies have also 
shown that tat mRNA transcripts accumulate and outnumber 
gag mRNA transcripts in recently infected cells with HIV-1 (67), 
whereas HIV-2 infected cells had reduced levels of tat mRNA 
transcripts, indicating a decreased rate of de novo cell infection 
in HIV-2 disease (66). This lower level of immune activation in 
HIV-2 cohorts as compared to HIV-1-infected groups (67) may 
explain the relative sparing of T lymphocytes from cell death in 
HIV-2 infection, which is consistent with the “less activation/
better outcome” paradigm.

The function of the thymus is well preserved in HIV-2-infected 
individuals, allowing CD4+ T-cells to retain better proliferative 
capacity, remain less differentiated, and elicit more polyfunctional 
responses, than in HIV-1 infected individuals (68). HIV-2-infected 
individuals are also highly efficient in replacing infected CD4+ 
T-cells (69). Earlier studies have revealed the central role of IL-2 
and IFNγ as survival and proliferative factors (70, 71) in HIV-1 
infection; as disease progresses, the frequency of IL-2-producing 
CD4+ T-cells is found to decline (42), which in turn relates to 
the reduced renewal capacity and increased susceptibility of 
these populations of cells to apoptosis (70). However, in HIV-2 
infection, the proportion of CD4+ T-cells expressing IL-2 is well 
preserved (42). HIV-2-infected individuals also possess a higher 
frequency of CD4+ T-cells capable of expressing both IFNγ and 
IL-2 in response to Gag-specific peptides than HIV-1 infected 
individuals (72, 73). Further immunological studies revealed the 
presence of Gag-specific CD4+ T-cells lacking CD57 expres-
sion in HIV-2 infection (74, 75), indicating better proliferative 
capacity resulting in higher number of cells in HIV-2 infected 
individuals (75). In lieu with these observations, normal CD4 
counts in HIV-2-infected individuals were three times greater 
than in HIV-1-infected individuals with comparable levels of 

CD4+ T-cells (74). These findings provide conclusive evidence 
for the lower lymphocyte susceptibility to apoptosis and slower 
rate of CD4+ T-cell decline in HIV-2-infected individuals as 
compared to those with HIV-1 infection.

COnCLUDinG ReMARKS

With decades of experimental research and volumes of obser-
vational data, the complete mechanism of CD4+ T depletion 
in HIV infection still remains to be explained. HIV-2, a natural 
model of attenuated HIV infection, provides an appropriate 
system for exploring paradigms for pathogenesis and helps in 
understanding retroviral pathology. This review highlights the 
unique aspects of CD4+ T-cell depletion in HIV-1 and HIV-2 
infections (Table 1). Collectively, the available data suggests that 
HIV-2 is associated with more efficient immunologic responses 
and lower replication efficiency in primary cells including resting 
CD4+ T-cells and activated CD4+ T-cells which ultimately leads 
to better virus control and slower disease progression.

Recent studies have identified several other factors that 
contribute to the difference in pathogenesis between HIV-1 and 
HIV-2 infections. One of these includes cellular sensors that are 
involved in the recognition of HIV and induction of innate and 
adaptive immune responses (76). Certain key differences between 
innate sensing mechanisms in HIV-1 and HIV-2 infections have 
been identified. One of the major cell types involved in differential 
innate immune sensing between HIV-1 and HIV-2 is the DCs (77). 
DCs do not normally get activated and are not efficiently infected 
by HIV-1 (78, 79), since SAMHD1, which is an intracellular exo-
nuclease, restricts HIV replication and transcription in dendritic 
and myeloid cells by hydrolyzing deoxynucleoside triphosphates 
during reverse transcription of viral RNA (79). In contrast, DCs 
are naturally activated and infected by HIV-2 (80); the Vpx pro-
tein that is produced by HIV-2 and not by HIV-1 is responsible for 
overcoming the SAMHD1 restriction in DCs (77, 80). Intrinsic 
pattern recognition receptors within the DCs sense HIV-2. The 
signals from the PRRs direct the antigen-presenting DCs to 
mature and generate effective acquired immune responses against 
HIV-2. This view is supported by the finding that polyfunctional, 
virus-specific, T-cell responses are more commonly seen in HIV-2 
than in HIV-1 infection (80). SAMHD1 degradation thus could 
have both positive and negative effects on the efficiency of HIV-2 
replication in vivo. On the one hand, it allows efficient infection 
of macrophages and DCs with HIV-2, thus expanding the number 
of viral target cells, and on the other hand, SAMHD1 degradation 
by Vpx may contribute to the effective control of viral replica-
tion in HIV-2-infected individuals by inducing potent immune 
responses through viral immune sensing by infected DCs (81).

The ability of HIV to seed latent reservoirs in the body very early 
during infection is one of the major barriers for eradication of the 
virus. The stable latent reservoirs in the body comprise long-lived, 
transcriptionally inactive, and immunologically inert cells lodged 
in anatomical sites with poor drug penetration. The major constitu-
ents of the viral reservoir are the latently infected resting memory 
CD4+ T-cells and macrophages (82, 83). HIV latency can be of two 
types: pre-integration and post-integration. Although not much is 
known about the contribution of pre-integration latency to HIV-2 
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infection, post-integration HIV-2 latency, through post-transcrip-
tional control of viral replication, has been described after in vitro 
infection of specific subsets of target cells (84). Subtle differences in 
the transcriptional control elements present in the HIV-2 LTR are 
thought to contribute to the differences in transcriptional activity 
and, in a way, to the differences in the pathogenesis between the 
two viruses. More studies in this line will help to further clarify the 
mechanisms that contribute to better control of HIV-2 infection 
and pave way for the design of effective strategies to prevent disease 
progression in HIV-infected individuals.
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