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Background. Preterm birth (PTB) rates are high in human immunodeficiency virus (HIV)–infected populations, even when 
on treatment. Still, only a subset of all births in HIV-infected pregnant women result in PTB, suggesting that risk factors other than 
HIV infection itself are also important. Inflammation is a known risk factor in uninfected populations, but its role in HIV-infected 
population have not been studied; in addition, the immune pathways involved are not clear and noninvasive immune markers with 
predictive value are lacking. Our objective was to determine the association of select markers of inflammation with PTB in HIV-1–
infected pregnant women.

Methods. Within a randomized trial of pregnant women receiving nevirapine (Six-Week Extended-Dose Nevirapine [SWEN] 
trial), we nested a case-control study (n = 107; 26 cases, 81 controls) to determine the association of maternal inflammation with 
PTB. Cases were defined as PTB (<37 weeks’ gestational age). We assessed inflammation by measuring plasma levels of markers of 
general inflammation (C-reactive protein [CRP]), intestinal barrier dysfunction (intestinal fatty acid binding protein [I-FABP]), and 
microbial translocation/monocyte activation (soluble CD14 [sCD14] and CD163 [sCD163]). Multivariable logistic regression was 
used to determine the odds of PTB per log2 increase of each marker.

Results. In multivariable models, there was increased odds of PTB per unit increase of log2 sCD14 (adjusted odds ratio [aOR], 
2.45; 95% confidence interval [CI], 1.24–4.86), log2 sCD163 (aOR, 3.87; 95% CI, 1.43–10.49), and log2 I-FABP (aOR, 2.28; 95% CI, 
1.18–4.41) but not log2 CRP (aOR, 0.72; 95% CI, .48–1.09).

Conclusions. Our results show that select immune markers can identify women at higher risk for PTB in HIV-1–infected pop-
ulations and suggest that modulating gut barrier integrity and microbial translocation may affect PTB.

Clinical Trials Registration. NCT00061321.
Keywords. preterm birth; HIV; microbial translocation; inflammation; intestinal integrity.

Preterm birth (PTB) is the leading cause of childhood mortal-
ity worldwide, accounting for 35% of neonatal mortality and 
15% of under-5 deaths [1]. Both antiretroviral therapy (ART)–
naive and ART-experienced human immunodeficiency virus 
(HIV)–infected pregnant women have higher incidence of PTB 
compared with HIV-uninfected women [2–8]. For example, 
the global prevalence of PTB is around 8% [9], but the rates in 
HIV-infected populations are as high as 25% [10]. These rates 
are unacceptably high; however, HIV infection still only results 
in PTB among a subset of all HIV-infected pregnant women. 
Recent studies of HIV-infected pregnant women have identified 
low maternal CD4 count, high viral load, comorbidities, and 

treatment regimen as some of the risk factors for PTB [11–13], 
but the role of inflammation has not been examined.

Studies in HIV-uninfected populations show that high 
maternal inflammation during pregnancy is associated with an 
increased incidence of PTB [14–17]. Although inflammation is 
known to be a major contributor to PTB, noninvasive immune 
markers in pregnant women that can identify women at higher 
risk for PTB are lacking [18]. HIV-infected pregnant women and 
their infants are an especially important population to study the 
role of inflammation and birth outcomes, yet studies are lack-
ing. In addition, studies have shown that higher inflammation 
in HIV-infected maternal–child populations is associated with 
mortality and HIV mother-to-child transmission [19, 20], but 
further studies are needed to address the association with PTB.

Importantly, HIV infection disrupts the host immune pro-
file and it is only partially corrected after ART initiation. HIV 
infects a disproportionate amount of CD4+ T cells from the gas-
trointestinal tract [21]. Even after suppressive ART, there is irre-
versible damage to the gastrointestinal tract affecting mucosal 
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immunity (including incomplete reconstitution of CD4+ T 
cells) and gut dysbiosis, resulting in microbial translocation 
and inflammation [21, 22]. Thus, when assessing the relation-
ship of inflammation with PTB in HIV-infected populations, it 
is valuable to also measure markers of intestinal epithelial integ-
rity and microbial translocation in addition to the more general 
markers of systemic inflammation.

To address these questions, we conducted a case-control 
study in HIV-1–infected pregnant women to determine the 
association of maternal inflammation (assessed by select mark-
ers of acute phase response, intestinal integrity, and microbial 
translocation) during pregnancy with PTB.

METHODS

Study Population and Design

We conducted a case-control study nested within a ran-
domized trial of single-dose vs extended-dose nevirapine to 
prevent HIV-1 transmission via breastfeeding [23]. In the 
parent Six-Week Extended-Dose Nevirapine (SWEN) study 
(NCT00061321), which took place from 2002 to 2007, HIV-1–
infected women received intrapartum nevirapaine, while the 
newborns were randomized to receive either a single dose of 
nevirapine after birth or extended doses through 6 weeks after 
birth [23]. Eligible HIV-1–infected pregnant women who 
provided informed consent were enrolled in sites from India, 
Ethiopia, and Uganda.

For this nested study, we focused on the participants and 
samples from India. The objective of this study was to determine 
the association of maternal inflammation with preterm birth. 
We utilized a case-control approach where cases were defined 
as preterm birth (<37 weeks’ gestational age) and controls as 
term birth. The following methods, listed in the order of prefer-
ence depending on data availability and as described before [24, 
25], were used to estimate gestational age: ultrasound in the first 
trimester, first day of last menstrual period (provided the par-
ticipant is confident of the dates), first available ultrasound, and 
fundal height assessment. Cases were chosen based on sample 
availability while controls were randomly chosen to provide an 
approximate 1:3 case:control ratio to improve the power of the 
study [26]. As parturition itself is considered a proinflammatory 
process [27], in this study we only included women (both cases 
and controls) with samples collected well before labor (21–33 
weeks’ gestational age) to assess inflammation during midpreg-
nancy (rather than at delivery). In addition, a small subset of 
women (3/107) included in this study were enrolled in SWEN 
but were never randomized because their infants did not meet 
the study drug administration criteria (ie, birthweight <2000 g).

The parent study only enrolled women ≥32 weeks; as a result, 
our analysis excludes very preterm birth (<32 weeks). As the 
SWEN study was completed before universal Option B+ rollout 
(recommendation to provide ART to all HIV-infected pregnant 
women), a significant proportion of women in this study did 

not receive any HIV drugs during pregnancy, whereas others 
received either azidothymidine (AZT) alone or combination 
ART (cART). Among the 12 women taking ART, there was 
some variability in their regimen. However, more than half of 
them were taking a combination of azidothymidine, lamivu-
dine, and nevirapine. For the purposes of this substudy, women 
receiving nevirapine intrapartum was not taken into account as 
our exposure variable (inflammation) was assessed prior to that 
while our outcome variable (PTB or term birth) would not be 
affected by intrapartum nevirapine administration.

Laboratory Assessments

We used enzyme-linked immunosorbent assays (ELISAs) to 
measure maternal plasma concentrations of select immune 
markers that are known to have a role in other adverse outcomes 
in HIV-infected adults [20, 28–30]: C-reactive protein (CRP), 
intestinal fatty acid-binding protein (I-FABP), soluble CD14 
(sCD14), and soluble CD163 (sCD163). Quantikine ELISA kits 
were purchased from R&D Systems (Minneapolis, Minnesota), 
and samples were run in duplicates at the National Institutes 
of Health International Centre for Excellence in Research lab-
oratory in Chennai, India. Results from prior studies that have 
frozen samples to a similar time range as SWEN show that these 
immune markers in plasma are stable over time [31]; in addi-
tion, case and control samples in this study were frozen for a 
similar amount of time.

Statistical Analyses

To assess differences in covariates by case or control status (PTB 
or not), Fisher exact test for categorical variables and Wilcoxon 
rank-sum test for continuous variables were used to calculate 
P values. Covariates such as parity, history of previous preterm 
birth, maternal body mass index (BMI), age, and education 
were chosen because they are known risk factors for PTB in 
the general population [32, 33]. Other HIV-specific risk factors 
such as CD4 count, viral load, and treatment regimen were cho-
sen based on prior studies [12, 34]. For this study, we used CD4 
count and viral load values (collected by the parent study) cor-
responding to the visit when plasma that was used for immune 
assessment was collected. The treatment regimen for this analy-
sis refers to treatment received prior to labor (not intrapartum); 
women who only received nevirapine intrapartum and no treat-
ment before are categorized as “none”.

Maternal plasma concentrations of the inflammation mark-
ers were log transformed to base 2, and differences in median 
concentrations by cases (PTB) and controls (term birth) were 
assessed using the Wilcoxon rank-sum test. Data transformed 
to log2 was more appropriate to present and interpret the odds 
ratio compared to using untransformed linear values. The 
odds of PTB per log2 increase of each inflammation marker 
was determined using univariable and multivariable logistic 
regression. Multivariable models adjust for known risk factors 
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including maternal age, BMI, education, parity, history of pre-
vious PTB, anemia (<11.0 g/dL), CD4+ T-cell count, viral load, 
and maternal treatment during pregnancy.

RESULTS

Study Population Characteristics

Pregnant women in this study had a median age of 23  years 
(interquartile range [IQR], 21–26 years) and a median BMI of 
21.3 kg/m2 (IQR, 19.8–23.4 kg/m2). Median CD4 T-cell count 
was 425 (IQR, 294–560) cells/µL and median viral load was 
4.32 (IQR, 3.51–4.68) log10 copies/mL (Table 1). Around 40% 
of women had primary level education or less. Parity was ≥2 for 
23% of the women and 1 for 41% the women. Eighteen percent 
of these women had a history of previous PTB. Only 11% of the 
women had received cART (with or without AZT) during preg-
nancy, whereas 47% received AZT alone and 42% received no 
treatment (Table 1). Forty percent of the women were anemic. 
The median hemoglobin level was 11.6 g/dL; cases had median 
hemoglobin levels of 10.9 g/dL vs 11.6 g/dL for controls. Cases 
and controls were significantly different by HIV treatment sta-
tus during pregnancy (P = .004) whereas there were no signifi-
cant differences by age (P = .81), CD4 count (P = .82), viral load 
(P = .90), BMI (P = .25), education (P = .50), parity (P = .84), 
anemia (P = .08), and history of previous PTB (P = .78) (Table 1).

In the overall study population, median gestational weeks at 
delivery was 38 (IQR, 37–39): cases with 36 weeks (IQR, 35–36) 
and controls with 39 weeks (IQR, 38–40). Median birthweight 
in the overall study population was 2600 g (IQR, 2450–3000 g); 
those with PTB had a birthweight of 2325 g (IQR, 2100–2500 g) 
compared with 2800 g (IQR, 2500–3100 g) for controls. Fifty-
one percent of the infants were female (with similar distribution 
among those with and without PTB) and 6-month mortality in 
these infants was 0.9% (1 infant who was born preterm).

Association of Maternal Inflammation With PTB

Cases (PTB) and controls (term birth) had significantly differ-
ent median plasma levels of log2 sCD163 (9.97 vs 9.73 ng/mL; 
P = .03) and log2 I-FABP (10.43 vs 9.99 pg/mL; P = .02) but not 
log2 CRP (2.14 vs 2.46; P = .25) or log2 sCD14 (20.58 vs 20.61; 
P = .49) (Figure 1).

In univariable models, increased levels of log2 sCD163 
(P = .02), log2 sCD14 (P = .04), and log2 I-FABP (P = .03) but 
not log2 CRP (P = .33) were associated with higher odds of PTB 
(Table 2). Similar associations were observed in multivariable 
models adjusting for maternal age, BMI, education, parity, his-
tory of previous PTB, CD4 count, viral load, anemia, and mater-
nal HIV treatment during pregnancy. There was an increased 
odds of PTB per log2 increase of sCD163 (adjusted odds 
ratio [aOR], 3.87; 95% confidence interval [CI], 1.43–10.49; 

Table 1. Maternal Characteristics by Case and Control Status

Characteristic
All 

(N = 107)
Cases 

(n = 26 [24%])
Controls 

(n = 81 [76%]) P Valuea

Age, y, median (IQR) 23 (21–26) 23 (22–25) 23.0 (21–26) .81

CD4 count, cells/mL, median (IQR) 425 (294–560) 445 (275–560) 417 (300–558) .82

Viral load, log10 copies/mL, median (IQR) 4.32 (3.51–4.68) 4.38 (3.29–4.70) 4.27 (3.60–4.67) .90

BMI, kg/m2, median (IQR) 21.3 (19.8–23.4) 21.0 (19.6–22.8) 21.5 (19.8–23.8) .25

Education

 Primary level or less 43 (40) 12 (28) 31 (72) .50

 Secondary or higher 64 (60) 14 (22) 50 (78)

Parity .84

 0 38 (36) 8 (21) 30 (79)

 1 44 (41) 12 (27) 32 (73)

 ≥2 25 (23) 6 (24) 19 (76)

Previous preterm birth

 No 88 (82) 21 (24) 67 (76) .78

 Yes 19 (18) 5 (26) 14 (74)

Anemia

 No 63 (60) 12 (19) 51 (81) .08

 Yes 42 (40) 14 (33) 28 (67)

Treatment during pregnancyb

 None 45 (42) 17 (38) 28 (62) .004

 AZT only 50 (47) 5 (10) 45 (90)

 cART ± AZT 12 (11) 4 (33) 8 (67)

Data are presented as No. (%) of subjects unless otherwise indicated. Cases were defined as human immunodeficiency virus (HIV)–infected pregnant women who had a preterm birth 
(delivery <37 weeks’ gestation), and controls were HIV-infected pregnant women who had a normal delivery >37 weeks’ gestation.

Abbreviations: AZT, azidothymidine; BMI, body mass index; cART, combination antiretroviral therapy; IQR, interquartile range.
aP values were calculated using the Fisher exact test for categorical variables and the Wilcoxon rank-sum test for continuous variables to determine the difference between cases and 
controls.
bWhile women in the parent Six-Week Extended-Dose Nevirapine (SWEN) study received nevirapine during labor as part of the randomized trial, this is referring to treatment received during 
pregnancy (ie, prior to labor).
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P = .008), sCD14 (aOR, 2.45; 95% CI, 1.24–4.86; P = .01), and 
I-FABP (aOR, 2.28; 95% CI, 1.18–4.41; P =  .01) but not CRP 
(aOR, 0.72; 95% CI, .48–1.09; P = .12) (Table 2).

DISCUSSION

In our study of HIV-1–infected pregnant women from India, 
higher levels of markers for intestinal barrier dysfunction and 
microbial translocation were independently associated with 
increased odds of PTB. Prior studies in HIV-infected individu-
als have shown that intestinal barrier dysfunction and microbial 
translocation were associated with various adverse outcomes 

including mortality and mother-to-child HIV transmission [20, 
29]. Our results suggest that intestinal integrity and microbial 
translocation can also affect birth outcomes such as PTB and 
potential interventions to modulate intestinal integrity and 
microbial translocation may reduce PTB. In addition, future 
studies are needed to determine whether these markers are also 
associated with PTB in HIV-uninfected pregnant women.

Inflammation is a known risk factor for PTB [16], but studies 
are lacking in HIV-infected populations. It is important to note 
that although pregnancy used to be considered an immuno-
suppressive state, new studies have suggested there are different 

Table 2. Association of Pregnancy Inflammation Markers With Preterm Birth

Univariable Model Multivariable Modela

Marker OR (95% CI) P Value Adjusted OR (95% CI) P Value

Log2 CRP 0.86 (.63–1.17) .33 0.72 (.48–1.09) .12

Log2 sCD14 1.70 (1.01–2.86) .04 2.45 (1.24–4.86) .01

Log2 sCD163 2.32 (1.15–4.69) .02 3.87 (1.43–10.49) .008

Log2 I-FABP 1.85 (1.07–3.22) .03 2.28 (1.18–4.41) .01

Abbreviations: CI, confidence interval; CRP, C-reactive protein; I-FABP, intestinal fatty acid binding protein; OR, odds ratio; sCD14, soluble CD14; sCD163, soluble CD163.
aMultivariable logistic regression models study the association of maternal inflammation with preterm birth (cases), and are adjusted for maternal age, body mass index, education, parity, 
history of previous preterm birth, anemia, CD4 T-cell count, and viral load (at time of inflammation assessment) and maternal human immunodeficiency virus treatment during pregnancy.

Figure 1. Levels of inflammation markers in overall study population and by case (preterm birth) and control (term birth) groups. Shown as median (interquartile range). 
Wilcoxon rank-sum test used to calculate P values to show the difference by cases and controls. *P < .05. Abbreviations: CRP, C-reactive protein; I-FABP, intestinal fatty acid 
binding protein; sCD14, soluble CD14; sCD163, soluble CD163.
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immune phases during pregnancy [27, 35, 36]. In fact, based on 
the immune profile, pregnancy can be divided into 3 phases. 
The first (implantation and early pregnancy) and last (partu-
rition) phases are proinflammatory, while the second phase 
(fetal growth and development) is anti-inflammatory [27]. As 
a result, high inflammation during the anti-inflammatory sec-
ond phase is associated with adverse birth outcomes including 
PTB. However, the immune pathways involved in PTB are not 
well delineated. In this analysis, we studied the relationship of 
plasma markers of general inflammation (an acute phase pro-
tein) measured during this second phase (second and early 
third trimester) with PTB. In addition, given that HIV impairs 
gut integrity, we also determined the association of plasma 
markers of intestinal barrier dysfunction and microbial trans-
location with PTB.

Our results show that a plasma marker of acute phase response 
(CRP) was not associated with PTB. Results from other studies 
in uninfected populations have been inconsistent when plasma 
CRP has been used as a marker [18]. Some potential reasons 
for this inconsistency include CRP having a short half-life and 
being nonspecific [37]. Future studies with serial measurements 
of plasma CRP during pregnancy could help clarify this rela-
tionship as it could help distinguish between acute and per-
sistent inflammation [38, 39]. Another proposed reason for the 
inconsistency is that plasma levels might not clearly reflect what 
is happening in maternofetal interface. In fact, studies have 
shown that CRP in amniotic fluid but not plasma is associated 
with preterm birth [18]. However, obtaining amniotic fluid is 
an invasive procedure and not practical for wide use in clinical 
settings. To study other noninvasive immune markers that can 
identify women at higher risk for PTB, we focused on plasma 
markers of intestinal barrier dysfunction and microbial translo-
cation. We chose these markers based on the pathophysiology 
of HIV-1 infection, which results in depletion of mucosal CD4+ 
T cells followed by impaired gut function, gut dysbiosis, and 
microbial translocation [21, 22]. Microbial translocation, which 
is the translocation of microbial products from the gastroin-
testinal tract to circulation, leads to monocyte activation and 
immune activation [40].

Our results show that maternal plasma I-FABP, sCD14, and 
sCD163 were associated with PTB. I-FABP has been recently 
shown to be a marker for gut barrier dysfunction, and studies 
have assessed the relationship of I-FABP with various outcomes 
in HIV-infected adults and infants [28, 29]. To our knowledge, 
this is the first study to show that higher levels of plasma I-FABP 
are associated with PTB in HIV-infected pregnant women. In 
addition, it is not yet known whether this relationship also holds 
true in HIV-uninfected populations and whether other condi-
tions (eg, malnutrition) that affect gut integrity and microbial 
translocation can also increase the risk of PTB.

Because sCD14 and sCD163 correlate with plasma lipopoly-
saccharide (LPS) levels, they are also widely used as a marker 

for microbial translocation [40]. However, they are more spe-
cifically a marker of monocyte/macrophage activation, with 
sCD163 considered a more specific marker (as sCD14 can also 
be produced by other cells) [41]. In our study, both of these 
markers were associated with PTB. Although results for sCD14 
in Figure 1 and Table 2 may seem inconsistent, these results are 
best explained through the different statistical methods used, 
where the Wilcoxon rank-sum test (Figure 1) is only comparing 
the medians while Table 2 is comparing the odds of PTB per 
unit increase of log2 sCD14 levels, Our result on the associa-
tion of increased sCD14 with PTB is in agreement with a prior 
study on PTB [42], whereas previous studies have not assessed 
the role of sCD163. Although we did not directly measure LPS, 
our data on I-FABP, taken together with the data on sCD14 
and sCD163, provide support to the model of gut barrier dys-
function, microbial translocation, and monocyte/macrophage 
activation playing a significant role in adverse outcomes in 
HIV-infected adults including PTB.

Our study has a few limitations. The sample size of this 
study is small and limited to only the Indian participants from 
SWEN. While we adjusted for potential confounders, there 
might be unmeasured or unknown confounders that we have 
not accounted for, such as nutritional status, although we did 
observe a trend of PTB associated with anemia. In addition, 
this study did not identify the potential reasons why some HIV-
infected pregnant women had more intestinal barrier dysfunc-
tion and monocyte activation compared to others. While future 
studies should address potential causes such as micronutrient 
deficiencies or intestinal infections (eg, diarrhea or parasitic 
diseases of the gut), our results suggests that, regardless of the 
cause, compromised intestinal integrity and subsequent micro-
bial translocation/monocyte activation is associated with PTB. 
Another limitation is that only 11% of our study participants 
received cART. While cART was not the standard of care during 
2002–2007, the time period that SWEN was conducted, further 
studies of inflammation and PTB will need to be conducted to 
determine the association in the era of Option B+. While we 
adjusted for both treatment status and viral load in our anal-
ysis, we would also like to acknowledge a potential limitation 
in the uneven distribution of women on cART between cases 
and controls in this study population. Another point to note 
is that future studies should assess a more comprehensive list 
of immune markers, as we only studied a select few markers 
that were predictive of adverse outcomes in nonpregnant HIV-
infected populations.

In conclusion, our analysis of a convenience sample of 
archived plasma from HIV-1–infected pregnant women remote 
from delivery showed that markers of intestinal barrier dys-
function and monocyte activation were associated with PTB. 
We propose that in the future, these and other biomarkers could 
serve to identify women at increased risk for PTB. In addi-
tion, therapeutics targeting intestinal integrity and microbial 
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translocation could prove valuable in the prevention or treat-
ment of preterm labor. Finally, further studies are needed to 
assess whether these markers could also be useful in HIV-
uninfected women, and in HIV-infected women receiving opti-
mized combination ART.
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