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Filarial infections are known tomodulate cytokine responses in pulmonary tuberculosis by

their propensity to induce Type 2 and regulatory cytokines. However, very little is known

about the effect of filarial infections on extra-pulmonary forms of tuberculosis. Thus, we

have examined the effect of filarial infections on the plasma levels of various families of

(IL-1, IL-12, γC, and regulatory) cytokines and (CC and CXC) chemokines in tuberculous

lymphadenitis coinfection. We also measured lymph node culture grades in order to

assess the burden ofMycobacterium tuberculosis in the two study groups [Fil+ (n = 67)

and Fil– (n = 109)]. Our data reveal that bacterial burden was significantly higher in Fil+

compared to Fil– individuals. Plasma levels of IL-1 family (IL-1α, IL-β, IL-18) cytokines

were significantly lower with the exception of IL-33 in Fil+ compared to Fil– individuals.

Similarly, plasma levels of IL-12 family cytokines -IL-12 and IL-23 were significantly

reduced, while IL-35 was significantly elevated in Fil+ compared to Fil– individuals.

Filarial infection was also associated with diminished levels of IL-2, IL-9 and enhanced

levels of IL-4, IL-10, and IL-1Ra. Similarly, the Fil+ individuals were linked to elevated

levels of different CC (CCL-1, CCL-2, CCL-3, CCL-11) and CXC (CXCL-2, CXCL-8,

CXCL-9, CXCL-11) chemokines. Therefore, we conclude that filarial infections exert

powerful bystander effects on tuberculous lymphadenitis, effects including modulation

of protective cytokines and chemokines with a direct impact on bacterial burdens.
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INTRODUCTION

Lymphatic filariasis is a tropical disease afflicting about 70 million people worldwide (1). It is an
infection caused by the nematodes, Wuchereria bancrofti, Brugia malayi, and Brugia timori and is
transmitted by mosquitoes (2). Filarial infections occur predominantly in tropical regions of the
world where pulmonary and extra-pulmonary tuberculosis (TB) are co-prevalent (3). Tuberculous

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00706
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00706&domain=pdf&date_stamp=2020-04-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gokul.r@nirt.res.in
https://doi.org/10.3389/fimmu.2020.00706
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00706/full
http://loop.frontiersin.org/people/490692/overview
http://loop.frontiersin.org/people/516914/overview


Kathamuthu et al. Filaria-TBL Coinfection

lymphadenitis (TBL) is the most common manifestation of
extra-pulmonary TB and constitutes 35% of all forms of
extra-pulmonary TB (4). The incidence of TBL has increased in
parallel with the increase of mycobacterial infections worldwide.
Cervical lymphadenopathy is the most common manifestation
of TBL but other lymph nodes including inguinal, axillary,
mesenteric andmediastinal can be involved (5). The pathogenesis
of TBL is still poorly understood (5).

Cytokines are crucial players in host resistance to both
pulmonary TB and TBL (6, 7). Thus, Type 1, Type 17 and
other pro-inflammatory cytokines (including IL-1, IL-12, and γC
family of cytokines) are important for host protection, while Type
2 and regulatory cytokines are detrimental for host immunity
against active TB (7). A variety of chemokines are known to
play an important role in the immune response to active TB
(8, 9). Filarial infections are known to modulate cytokine and
chemokine responses in both active and latent tuberculosis (TB)
(3). However, the effect of filarial infections on the cytokine and
chemokine response to TBL is not known.

Therefore, we aimed to study the cytokine and chemokine
profile established during filarial infection to assess its impact on
TBL disease. To address this, we measured the plasma levels of
different families of (IL-1, IL-12, γC, and regulatory) cytokines
and (CC and CXC) chemokines in filaria-TBL coinfection.
We show that filarial coinfected individuals have significantly
increased bacterial burden in the affected lymph nodes when
compared to filarial-uninfected individuals. Our results also show
significantly altered cytokine and chemokine responses in filaria-
TBL coinfection.

RESULTS

Study Population Demographics
The demographics of the study population are listed in (Table 1).
There were no significant differences in age and gender between
Fil+ and Fil– individuals. Neither age nor gender had any
significant effect on the cytokine or chemokine profiles. However,
Fil+ individuals had moderately higher bacterial burdens as
determined by the culture grade in solid media of the affected
lymph node (p = 0.045). Hence, filarial coinfection is associated
with higher bacterial burdens in TBL.

Fil+ Individuals Exhibit Significantly
Diminished Levels of IL-1α, IL-1β, IL-18,
IL-12, and IL-23 and Significantly
Enhanced Levels of IL-33 and IL-35
Filarial infection is associated with diminished levels of pro-
inflammatory cytokines in pulmonary TB (3). To assess the
impact of coincident filarial infection on IL-1 family (IL-1α,
IL-1β, IL-18, IL-33) and IL-12 family (IL-12, IL-23, IL-27, IL-
35) of cytokines in TBL individuals, we measured the plasma
levels of these cytokines (Figure 1). The plasma levels of IL-1α
(Geometric mean (GM) of 83.82 vs. 123.4 pg/ml, p = 0.0047),
IL-β (GM of 16.78 vs. 21.27 pg/ml, p < 0.0001) and IL-18
(GM of 167.7 vs. 310.0 pg/ml, p < 0.0001) were significantly
lower in Fil+ compared to Fil– individuals. In contrast, the

plasma levels of IL-33 (GM of 749.5 vs. 545.9 pg/ml, p < 0.0001)
was significantly higher in Fil+ compared to Fil– individuals
(Figure 1A). The plasma levels of IL-12 (GM of 82.12 vs. 428.3
pg/ml, p < 0.0001) and IL-23 (GM of 12.89 vs. 19.09 pg/ml, p
< 0.0001) were significantly lower and the plasma levels of IL-35
(GMof 27.44 vs. 17.63 pg/ml, p< 0.0001) was significantly higher
in Fil+ compared to Fil- individuals (Figure 1B). Hence, filarial
coinfection is characterized by altered plasma levels of IL-1 and
IL-12 family of cytokines.

Fil+ Individuals Exhibit Significantly
Diminished Levels of IL-2 and IL-9 and
Significantly Enhanced Levels of IL-4
Filarial infections are associated with alterations in the γc family
of cytokines in pulmonary TB (3). Hence, we measured the
circulating levels of γc family (IL-2, IL-4, IL-7, IL-9, IL-15, and
IL-21) of cytokines to examine the influence of filarial coinfection
among TBL individuals (Figure 2). The plasma levels of IL-2
(GM of 49.02 vs. 82.09 pg/ml, p < 0.0001) and IL-9 (GM of 15.26
vs. 38.79 pg/ml, p < 0.0001) were significantly lower and the
plasma levels of IL-4 (GM of 41.93 vs. 10.18 pg/ml, p < 0.0001)
was significantly higher in Fil+ compared to Fil– individuals. In
contrast, there were no significant differences in the levels of IL-
7, IL-15, and IL-21 between the two groups (Figure 2). Hence,
filarial coinfection is characterized by altered plasma levels of γc
family of cytokines.

Fil+ Individuals Exhibit Significantly
Enhanced Levels of IL-10 and IL-1Ra
Filarial infection is associated with elevated regulatory cytokines
(IL-10 and TGF β) in pulmonary TB (3). Hence, we studied the
influence of filarial coinfection on regulatory cytokines in TBL,
by measuring the plasma levels of these cytokines (Figure 3).
The plasma levels of IL-10 (GM of 366.9 vs. 102.0 pg/ml, p <

0.0001) and IL-1Ra (GM of 1148.0 vs. 755.7 pg/ml, p = 0.0136)
were significantly higher in Fil+ compared to Fil– individuals. In
contrast, there were no significant differences in the levels of TGF
β between the two groups (Figure 3). Hence, filarial coinfection is
characterized by increased plasma levels of regulatory cytokines.

Fil+ Individuals Exhibit Significantly
Enhanced Levels of CC Chemokines
Helminth infections are associated with diminished CC
chemokines in latent TB (10). To study the association of filarial
coinfection on CC chemokines in TBL, we measured the plasma
levels of CCL1, CCL2, CCL3, and CCL11 (Figure 4). The plasma
levels of CCL1 (GM of 24.64 vs. 11.31 pg/ml, p = 0.0024),
CCL2 (GM of 33.59 vs. 10.43 pg/ml, p < 0.0001) and CCL11
(GM of 169.7 vs. 43.82 pg/ml, p < 0.0001) were significantly
higher in Fil+ compared to Fil– individuals (Figure 4). Hence,
filarial coinfection is characterized by increased plasma levels of
CC chemokines.
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TABLE 1 | Demographics of the TBL individuals.

Study demographics Fil+ Fil– P-value

Number of subjects recruited (n) 67 109 –

Gender (M/F) 55/12 86/23 –

Median age in years (range) 40.2(18-65) 36.8(19-65) NS

Culture grade

Low bacterial burden (1+)

Medium bacterial burden (2+)

High bacterial burden (3+)

16

30

21

65

31

13

0.045a

Filarial circulating antigen Positive (>128 U/ml) Negative (<128 U/ml) –

a Calculated using the Chi-square test; NS, not significant.

FIGURE 1 | Altered plasma levels of IL-1 and IL-12 family of cytokines in filarial coinfected individuals with TBL. The plasma levels of (A) IL-1 (IL-1α, IL-1β, IL-18, and

IL-33) and (B) IL-12 family (IL-12, IL-23, IL-27, and IL-35) of cytokines were measured in Fil+ (n = 67) and Fil– (n = 109) individuals with TBL. The results are

represented as scatter plots with each circle representing a single individual. The bar indicates the geometric mean and the significant differences were calculated

using non-parametric Mann-Whitney U test. The dotted line indicates the limit of detection for each cytokine.

Fil+ Individuals Exhibit Significantly
Enhanced Levels of Most CXC Chemokines
Helminth infections are associated with diminished CXC
chemokines in latent TB (10). To study the association of filarial
coinfection on CXC chemokines in TBL, we measured the

systemic levels of CXCL1, CXCL2, CXCL8, CXCL9, CXCL10,
and CXCL11 (Figure 5). The plasma levels of CXCL2 (GM of
74.75 vs. 12.04 pg/ml, p < 0.0001), CXCL8 (GM of 92.34 vs.
19.64 pg/ml, p < 0.0001), CXCL9 (GM of 199.4 vs. 48.40 pg/ml,
p < 0.0001) and CXCL11 (GM of 43.07 vs. 10.27 pg/ml, p <
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FIGURE 2 | Altered plasma levels of γC cytokines in filarial coinfected individuals with TBL. The plasma levels of γC family (IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21) of

cytokines were measured in Fil+ (n = 67) and Fil– (n = 109) individuals with TBL. The results are represented as scatter plots with each circle representing a single

individual. The bar indicates the geometric mean and the significant differences were calculated using non-parametric Mann-Whitney U test. The dotted line indicates

the limit of detection for each cytokine.

0.0001) were significantly higher and plasma levels of CXCL1
(GM of 69.71 vs. 104.1 pg/ml, p < 0.0001) was significantly lower
in Fil+ compared to Fil– individuals (Figure 5). Hence, filarial
coinfection is characterized by increased plasma levels of most
CXC chemokines.

DISCUSSION

Extra-pulmonary TB accounts for ∼20% of all TB cases
and lymph nodes are often the most common site (4).
Previous studies have shown that helminth infections can
influence the pathogenesis and immune response to pulmonary
TB (3, 11). To our knowledge, our study is the first to
examine the bacteriological and immunological outcomes in
filaria-TBL coinfections and the second to examine the same

in helminth-TBL coinfections in total (12). Our previous
study had demonstrated that Stronglyoides stercoralis coinfection
could modulate cytokine (but not chemokine) responses both
systemically and in an antigen—specific manner (12). We
had also demonstrated elevated bacterial burdens in that
helminth-TBL coinfection (12). We expand our data on those
findings and report the influence of filarial coinfection on
the cytokine and chemokine response in TBL disease. We
also validate our previous report that co-infected helminth
infection is associated with higher bacterial burdens in the
affected lymph node of TBL individuals. This study offers
new insights into the pathogenesis of TBL disease in the
presence of co-prevalent helminth infections and suggests that
treatment of helminth infections could influence the outcome of
TBL disease.
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FIGURE 3 | Elevated plasma levels of regulatory cytokines in filarial coinfected individuals with TBL. The plasma levels of regulatory (IL-10, IL-1Ra, and TGF-β)

cytokines were measured in Fil+ (n = 67) and Fil– (n = 109) individuals with TBL. The results are represented as scatter plots with each circle representing a single

individual. The bar indicates the geometric mean and the significant differences were calculated using non-parametric Mann-Whitney U test. The dotted line indicates

the limit of detection for each cytokine.

Among cytokines involved in host immunity to TB disease,
the IL-1 and IL-12 family of cytokines play a major role. IL-
1α, IL-1β, and IL-18 are known to be essential for immunity
to TB infection (13, 14). Both IL-1 cytokines signal through
the same IL-1 receptor and are known to be independently
required for host resistance and deficiency in either cytokine
renders mice more susceptible to TB infection (15). Similarly,
IL-18 is important for host immunity and functions by
induction of IFNγ (16). Finally, TBL is characterized by
diminished plasma and TB—antigen stimulated levels of IL-1β
and IL-18 (17). Our data therefore suggest that in the presence
of filarial infection, protective cytokines are dampened in
the circulation of TBL individuals. In contrast, IL-33 is a
predominantly anti-inflammatory cytokine belonging to the IL-1
family (18). It is mostly expressed in non-hematopoietic cells
like adipocytes, fibroblasts, intestinal and bronchial epithelial
cells and endothelial cells (19–21). IL-33 is also expressed by
hematopoietic cells mainly by dendritic cells (DCs) to lesser
extent (22). IL-33 acts an alarmin in the induction of Type 2
cytokine responses (23) and is known to help attenuate ongoing
TB infection in mice (24). Since IL-33 is induced in a variety
of Th2 settings, it is not surprising to see that IL-33 levels were
enhanced in filarial coinfected individuals. However, whether
IL-33 has a beneficial or detrimental effect on the TBL disease
remains to be determined.

IL-12 and IL-23 are the two primary cytokines fundamentally
important in resistance to TB infection as demonstrated both by
animal models and human immune deficiencies (25–30). IL-12
by its induction of Type 1 responses and IL-23 by driving Type 17
cytokine responses are critical in host immunity to TB. Our data
showing diminished levels of both the cytokines also suggest that
filarial infections modulate immunity in TBL by decreasing Type
1 and Type 17 cytokine responses. IL-27 has an important role

in immunity to TB (31) but is not modulated in the presence of
coinfection. Finally, IL-35 is an anti-inflammatory cytokine of the
IL-12 family (32), whose role in TB is not clear. Our data suggest
that filarial modulation of TBL disease results in higher levels of
IL-35, whichmight be potentially host-detrimental. The role of γc
cytokines in host immunity to TB infection and disease is not well
understood. IL-2 and IL-21 have been shown to be important to
host resistance in animal models (33, 34) and regulation of these
cytokines has been demonstrated in human pulmonary TB (35).
Our data on the modulation of γc cytokines in the presence of
filarial coinfection suggests that IL-2 and IL-9 (but not IL-7, IL-
15 or IL-21) levels are significantly diminished. The implication
of the alterations in IL-2 and IL-9 needs to be examined further.

One potential mechanism for the decrease in baseline levels
of proinflammatory cytokines in TBL individuals with filarial
coinfection could be a concomitant increase in regulatory
cytokines. Our data suggest that IL-4, IL-10, and IL-1Ra are
significantly increased in Fil+ individuals suggesting a plausible
biological mechanism for the downmodulation of IL-1 and IL-12
family of cytokines. Also, since IL-4, IL-10, and IL-1Ra are known
to play a detrimental role in enhancing susceptibility to infection
(36–38), our data indicate that alteration of the balance between
protective and regulatory cytokines plays a pivotal role in the
establishment of cytokine responses in filarial-TBL coinfection.
In addition, this balance could also be impacted by the elevated
levels of the anti-inflammatory cytokines—IL-33 and IL-35.
Interestingly, no difference in TGFβ levels was observed between
coinfected and uninfected individuals in TBL disease.

Chemokines play an important role in cell migration to TB
infected organs and are critical for TB control (8, 9). Indeed,
productive granuloma formation is known to be tightly regulated
by chemokines (8, 9). However, chemokine dysregulation can
shift the balance from protection to inflammation and pathology
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FIGURE 4 | Elevated plasma levels of CC chemokines in filarial coinfected individuals with TBL. The plasma levels of CC (CCL1, CCL-2/MCP-1, CCL3/MIP1α, and

CCL11/eotaxin) chemokines were measured in Fil+ (n = 67) and Fil– (n = 109) individuals with TBL. The results are represented as scatter plots with each circle

representing a single individual. The bar indicates the geometric mean and the significant differences were calculated using non-parametric Mann-Whitney U test. The

dotted line indicates the limit of detection for each chemokine.

in TB disease (8, 9). We have previously shown that plasma
chemokines are markers of disease severity, bacterial burdens
and delayed culture conversion in pulmonary TB (39). Our
data clearly show that both CC (CCL1, CCL2, CCL11) and
CXC (CXCL2, CXCL8, CXCL9, CXCL11) are clearly elevated
in filarial-TBL coinfection. Due to their ability to recruit
neutrophils, eosinophils and other inflammatory cell types (40),
these chemokines could play a potentially pathogenic role in TBL.
Finally, dysregulation of chemokine production has been shown
to enhance TB cavitation and pathology and therefore, excessive
circulating levels of chemokines could also contribute to this
process (41).

Our study suffers from the limitation of being cross-sectional,
lacking the ability to attribute cause-effect mechanisms,
measuring only plasma (and not local) levels of cytokines and

chemokines and not performing stool examinations for other
helminth infections. Nevertheless, our study clearly shows that
coexistent filarial infection has major effects on TBL bacteriology
and immunology. In addition to being associated with higher
bacterial burdens, filarial infections appear to downmodulate
the systemic levels of key protective cytokine families and
upregulate the systemic levels of key pathogenic cytokines and
chemokines. Thus, by its ability to influence the cytokine and
chemokine milieu in TBL, coexistent filarial infection imparts
certain deleterious effects in the course of TBL disease. The
role of immune cell subsets in helminth—TBL coinfection is
currently under investigation. Overall, our results suggest the
crucial role of filarial coinfection in modulating the necessary
protective cytokines and chemokines in TBL disease. Therefore,
our future approach is to study the association of those cytokines
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FIGURE 5 | Elevated plasma levels of CXC chemokines in filarial coinfected individuals with TBL. The plasma levels of CXC (CXCL1/GRO-α, CXCL2/GRO-β,

CXCL9/MIG, CXCL8, CXCL10/IP-10, CXCL11/ITAC1) chemokines were measured in Fil+ (n = 67) and Fil– (n = 109) individuals with TBL. The results are represented

as scatter plots with each circle representing a single individual. The bar indicates the geometric mean and the significant differences were calculated using

non-parametric Mann-Whitney U test. The dotted line indicates the limit of detection for each chemokine.

and chemokines in those groups of study individuals after the
completion of anthelmintic treatment to understand the effect
of anthelmintic treatment on this important component of the
immune response against the TB pathogen.

MATERIALS AND METHODS

Ethics
All individuals (participants above 18 years of age were enrolled
in the study) were assessed as part of a natural history study
protocol approved by Institutional Review Boards of National
Institute for Research in Tuberculosis (NIRT, NIRTIEC2010002)
and informed written consent was obtained from all participants
involved in the study.

Study Population
We studied a group of 176 individuals with TBL, 67 of whom
were infected with filarial infection (hereafter Fil+) and 109
of whom were negative for filarial infection and only had TBL
(hereafter Fil–) (Table 1). This was a nested case control study
within a larger study on the immune responses in pulmonary
and extrapulmonary TB conducted at the Government Stanley
Medical Hospital, Chennai. Out of 252 extrapulmonary TB
cases, 176 TBL cases were used for this study. TBL diagnosis
was made on the basis of excision biopsy (i.e., affected lymph
nodes) showing culture positivity forM. tuberculosis. Culture was
performed using homogenized lymph node tissue and culture
grades [1+ (1–20 colonies)/2+ (20–100 colonies)/3+(>100
colonies)] were used to identify the bacterial burdens as
ascertained by growth of M. tuberculosis on Lowenstein-Jensen
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solid media [11]. Culture scoring was done independently and
blinded to the filarial infection status. Filarial (Wuchereria
bancrofti) infection was diagnosed by assessing the filarial
(both microfilaremic and amicrofilaremic) antigen levels using
TropBio Og4C3 enzyme-linked immunosorbent assay (ELISA)
(Trop Bio Pty. Ltd., Townsville, Queensland, Australia). The cut
off range to detect filarial antigen is>128 antigen unit (U/ml) and
considered as positive and<128 (U/ml) is considered as negative
for the presence of filarial antigen. All the study individuals
were BCG vaccinated, negative for HIV and not under any
steroid treatment. We did not perform any stool microscopy
examination for these individuals and they were anti-tuberculosis
and anthelmintic treatment naive. All these individuals were
from a peri-urban area in Chennai, India.

Plasma Collection and Measurement of
Cytokines by ELISA
Blood samples (10ml) were collected in sodium heparin tubes
and plasma was collected by centrifugation at 2,600 revolutions
per minute (rpm) for 10min at 4◦C and stored at −80◦C. The
following cytokines-IL-1α, IL-Ra, IL-1β, IL-2, IL-4, IL-7, IL-9,
IL-10, IL-12, IL-15, IL-18, IL-21 (DuoSet R&D Systems), IL-23,
IL-27, IL-33, IL-35 (e-Biosciences) and TGFβ (BioLegend) were
measured using ELISA.

Measurement of Chemokines by
Multiplex Immunoassay
Plasma chemokine levels were measured using a multiplex
immunoassay system (Luminex, Biorad) with a kit from
R&D Systems. The chemokines measured were: CC (CCL1,
CCL2/MCP-1, CCL3/MIP1α, CCL4/MIP-1β, CCL11/eotaxin)
and CXC (CXCL1/GRO-α, CXCL2/GRO-β, CXCL9/MIG,
CXCL8/IL-8, CXCL10/IP-10, CXCL11/ITAC1).

Statistical Analysis
All the data were analyzed using GraphPad PRISM (GraphPad
Software, Inc., San Diego, CA, USA) tool. Geometric means

(GM) were used for measurements of central tendency
and nonparametric Chi-square test was used to compare
statistically significant differences in age, gender and bacterial
burdens. Mann-Whitney U test was used to compare the
statistically significant differences among the cytokines and
chemokines analyzed.
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