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Abstract

T cells play an important role in controlling viral replication during HIV infection. An effective

vaccine should, therefore, lead to the induction of a strong and early viral-specific CD8+ T cell

response. While polyfunctional T cell responses are thought to be important contributors to

the antiviral response, there is evidence to show that polyfunctional HIV- specific CD8+ T cells

are just a small fraction of the total HIV-specific CD8+ T cells and may be absent in many indi-

viduals who control HIV replication, suggesting that other HIV-1 specific CD8+ effector T cell

subsets may be key players in HIV control. Stem cell-like memory T cells (TSCM) are a subset

of T cells with a long half-life and self-renewal capacity. They serve as key reservoirs for HIV

and contribute a significant barrier to HIV eradication. The present study evaluated vaccine-

induced antiviral responses and TSCM cells in volunteers vaccinated with a subtype C prophy-

lactic HIV-1 vaccine candidate administered in a prime-boost regimen. We found that ADVAX

DNA prime followed by MVA boost induced significantly more peripheral CD8+ TSCM cells and

higher levels of CD8+ T cell-mediated inhibition of replication of different HIV-1 clades as com-

pared to MVA alone and placebo. These findings are novel and provide encouraging evidence

to demonstrate the induction of TSCM and cytotoxic immune responses by a subtype C HIV-1

prophylactic vaccine administered using a prime-boost strategy.

Importance of the study

Effector and memory T cells play a crucial role in HIV infection and are well-preserved in con-

trollers, but become exhausted during infection. Stem cell like memory (TSCM) cells are a sub-

set of T cells that possess long half-life, self-renewal capacity and contribute a significant
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barrier to HIV eradication. The present study demonstrated increased CD8+ T cell mediated

viral inhibition of different clades of HIV-1 viruses and higher frequencies of peripheral TSCM

cells in volunteers who received a subtype C prophylactic HIV-1 vaccine candidate that was

tested in a Phase I trial in India. Our findings indicate that the vaccine candidate and vaccina-

tion regimen used in the trial were capable of eliciting a favourable antiviral response and

inducing production of CD8+ T cells and TSCM cells that offer further promise for future HIV

vaccine research.

Introduction

HIV/AIDS continues to be a significant challenge for global public health even after 35 years

of its discovery, with HIV’s sequence diversity and rapid evolution being major obstacles for

successful vaccine development [1]. Though several significant advances have been made with

respect to the design and development of HIV vaccines, there have not been any major break-

throughs in the field [2]. To date, only one candidate vaccine tested in the RV144 trial in Thai-

land, demonstrated the ability to significantly reduce the risk of HIV-1 acquisition, giving a

modest protective efficacy of 31%, providing new hope for antibody-based vaccine develop-

ment [3].

There is strong evidence to suggest that T cell-mediated responses play an important role

in suppression of virus replication and clearance of infected cells from the host [4–6]. Several

cohort studies have reported that generation and proliferation of HIV-specific CD8+ T cells

correlate inversely with viral load [7–10]. Thus, CD8+ T cell-mediated immune responses are

clearly capable of modulating the course of HIV infection and therefore constitute an impor-

tant dimension for vaccine research. Persistence and maintenance of the CD8+ T cell response

are dependent on CD4+ T cell help [11]. However, a recent study reported that naturally acti-

vated CD8+ T cells may persist in the absence of CD4+ T cells [12] and that a persistent mem-

ory CD8+ T cell response is important for viral control [13–17]. Long-lived memory CTLs can

directly kill cells infected with intracellular pathogens by producing cytokines, chemokines

(IL-2, IFN-γ, TNF-α, MIP-1) and cytotoxins (perforin, granzymes and granulysin). CTLs can

also use the Fas ligand that binds to the Fas receptors present on the surface of many cell types

and induce cellular apoptosis [18].

Recent studies have identified a subset of memory T cells that possess stem cell-like proper-

ties, called stem-like memory T cells (TSCM) [19–21]. TSCM cells are the least differentiated

among the distinct memory populations. They differentiate into different types of memory T

cells that play vital roles in controlling the immune response [19]. TSCM cells have been well

characterized in cancers and other autoimmune diseases. CD8+ TSCM cells have been proposed

as therapeutic targets in acquired aplastic anaemia [22]. However, the role of CD4+ and CD8+

TSCM cells in HIV infection and vaccination, and their contribution to antiviral immune

defence remains unclear. Earlier studies reported that the frequency of CD8+ memory T cells

(central and effector memory cells) correlates with lower viral load in chronic HIV infection

[23–25] and that lower levels of expression of PD-1 on these cells [26–28] indicate that long-

lived memory cells may be derived from TSCM cells. Thus, measuring vaccine-induced TSCM

cells could provide key insights into the ability of the vaccine to elicit robust and persistent cel-

lular immune responses.

Characterization of the nature of the antiviral response elicited by vaccination would pro-

vide the most critical clues to understanding the exact mechanisms that contribute to vaccine

efficacy. Assays that measure CD8+ T cell-mediated inhibition of replication of diverse HIV-1

isolates (viral inhibition assay/VIA) may be used to assess the breadth of the direct antiviral

function of these cells [29].

Cellular immunogenicity of HIV-1 subtype C vaccine
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Previously, we examined vaccine-induced humoral and cell-mediated responses to the

same subtype C HIV-1 vaccine (ADVAX DNA prime and MVA boost) tested in a phase I clin-

ical trial in India (P001 trial) and reported encouraging findings [30, 31]. In the current study,

we investigated vaccine-induced peripheral TSCM cells and in vitro viral inhibitory capacity of

vaccine-induced CD8+ T cells in the same cohort.

Materials and methods

Samples

The study was performed using cryopreserved peripheral blood mononuclear cells (PBMC)

obtained from volunteers who participated in the IAVI sponsored P001 trial conducted during

the period 2009–2010 [31]. The trial had enrolled a total of 32 HIV-uninfected healthy volun-

teers at two sites in India: 16 volunteers at the National Institute for Research in Tuberculosis

(NIRT), Chennai, and 16 volunteers at the National AIDS Research Institute (NARI), Pune.

The present analysis was confined to samples stored at NIRT alone and focuses on Chennai

participants. The 16 individuals (9 males and 7 females) were randomly assigned to either

Group A or B, with eight participants in each Group. Group A participants received two intra-

muscular (I.M.) injections of ADVAX or placebo at baseline (time ‘0’) and 1 month, followed

by two I.M. injections of TBC-M4 or placebo at months 3 and 6. Group B participants received

three I.M. injections of TBC-M4 or placebo at time 0, months 1 and 6. Among the 8 volunteers

in each Group, 6 received the vaccine and 2 received placebo (Fig 1).

Candidate vaccines

ADVAX is a DNA vaccine formulated by the Aaron Diamond AIDS Research Center

(ADARC), New York, USA, and manufactured by Vical Inc., San Diego, CA, USA (Lot#

04030248), utilizing the structural features of the commercial plasmid backbone pVAX1 [32,

33]. The vaccine contains two plasmid constructs (one plasmid cloned with the coding

sequences of gag and env genes of the Chinese HIV-1 clade B/C strain and the other one

cloned with the coding sequences of nef/tat and pol, intended to express a fusion protein)

Fig 1. Vaccination schedule followed in the IAVI Phase-I prime-boost HIV-1 subtype C prophylactic vaccine trial (P001 trial).

https://doi.org/10.1371/journal.pone.0229461.g001
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mixed in a 1:1 ratio. The candidate vaccine was suspended in sterile phosphate-buffered saline

with 0.01M sodium phosphate and 150 mM sodium chloride and was formulated to contain 4

mg of the DNA in a total volume of 1mL.

TBC-M4 is a vaccine manufactured by Therion Biologics Corporation, Cambridge, MA,

USA (Lot# 1B). It is a recombinant Modified Vaccinia Ankara (MVA) virus containing the

coding sequences of gag, env, reverse transcriptase (RT), tat, rev and nef of an Indian HIV-1

clade C strain [34]. The vaccine was suspended in phosphate-buffered saline and 10% glycerol

to contain 5x106 PFU in a total volume of 0.5 mL. The amino acid sequence homology

between the two vector inserts was found to be greater than 85% (ENV: 87.1%; GAG: 95%;

POL/RT: 96.4%).

Virus inhibition assay

Viruses. HIV-1 subtype A (U455), subtype B (IIIB), subtype C (247FV2), subtype D

(CBL4) and subtype AD (ELI) isolates were used in the VIA. U455 and CBL-4 were obtained

from NIBSC, UK, ELI and IIIB were obtained from the NIH AIDS Research and Reference

Reagent Program (Bethesda, MD), 247FV2 was kindly provided by George Shaw (University

of Pennsylvania, PA). The titer of each viral isolate was determined by end-point dilution and

defined as 50% tissue culture infectious dose (TCID50) using the TZM-bl cell line [29] obtained

from the NIH AIDS Research and Reference Reagent Program.

Expansion of CD4+ and CD8+ T cells. PBMC were thawed and resuspended at

1–1.5×106 cells/ml in RPMI containing 10% Fetal Bovine Serum (FBS), 50 units IL-2 (R10/50)

and 0.5μg/ml CD3+/CD4+ or CD3+/CD8+ bi-specific antibody for expansion of CD8+ and

CD4+ T cell sub-populations respectively. Culture volumes were doubled at days 3 and 6 with

R10/50 medium. Overall, the cell numbers increased by a factor of mean 5, and the typical

purity of day 7 cultures was 97 and 87% for CD4+ and CD8+ T cells respectively, demonstrat-

ing positive expansion and enrichment (�90% of the CD3+ T cells in culture) of the required

T cell sub-population [29].

Viral inhibition assay. Viral inhibition assay was performed as described by Spentzou

et al., 2010. Briefly, separate cultures of 7 day-expanded CD4+ T cells infected with different

HIV-1 isolates at a multiplicity of infection (MOI) of 0.01 were established. To limit variation

due to the possible effects of the vaccine regimen on CD4+ target cells, a single population of

target CD4+ T cells was generated for each subject; wherever available, this cell population was

generated from the baseline pre-vaccination sample. Virus-infected target cells were co-cul-

tured with autologous CD8+ T cells obtained at the pre-vaccination time point and at two

post-vaccination time points. CD4+ and CD8+ T cells were co cultured in 1:1 ratio. In our

assay, 0.5 million viral infected CD4+ T cells were co cultured with 0.5 million CD8+ T cells.

Every 3 to 4 days, half of the culture supernatant was removed and replaced with fresh R10/50

medium and assessed for Gag p24 content using a commercially available enzyme-linked

immunosorbent assay (ELISA) kit (PerkinElmer, United Kingdom). CD8+ T cell-mediated

inhibition was expressed as log10 reduction in the p24 content of day 13 supernatants from

CD8+ and CD4+ T cell co-cultures as compared to that of CD4+ T cells alone.

Cut-offs were defined by the 97.5th percentile of the baseline VIA response as estimated

using PROC QUANTREG in SAS 9.2 (SAS Institute Inc., Cary, NC). VIA response for each

virus was defined as positive if the following three criteria were fulfilled: (i) log10 inhibition is

greater than 1.5 for all HIV-1 isolates, (ii) pre-vaccination response for the same virus is nega-

tive, and (iii) the difference between the post-vaccination and pre-vaccination response is

�0.6 log10 inhibition [29].

Cellular immunogenicity of HIV-1 subtype C vaccine
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Polychromatic flow cytometric analysis of memory T cells and TSCM cells

Cryopreserved PBMC obtained at pre-vaccination, on the day of second MVA vaccination

(VAC II), one week after second vaccination, on the day of last MVA vaccination (VAC III)

and 1, 2 and 48 weeks after last MVA vaccination, were analyzed for memory T cell subset phe-

notypes. PBMC at pre-vaccination, one week after VAC II, one week after VAC III, and 2 and

48 weeks after last MVA vaccination were analyzed for TSCM cell phenotype. Two million

PBMC were washed with FACS buffer and stained with Live/Dead Fixable Aqua blue dye

(Invitrogen). The following cocktail of monoclonal antibodies were used to enumerate the

different cell types: T Memory and TSCM cell panel: anti-CD3-APCH7, anti-CD122-PE, anti-

CD4-PERCP, anti-CD28-FITC, anti-CD95-PECF594, anti-CD45RA-APC, anti-

CCR7-PECY7, and anti-CD8-APCR700. All antibodies were procured from Becton-Dickin-

son, India (S1 Table). Cells were stained for 30 minutes in the dark, washed and fixed with 4%

paraformaldehyde for 5 minutes, and acquired on a FACS ARIA SORP flow cytometer (Becton

Dickinson). A minimum of 1,000,000 total events were acquired and data were analyzed using

FlowJo software, version 10.4 (Treestar, Ashland, OR).

The following panels were used to identify the different memory subsets [19]. Naïve cells—

CD45RO- CCR7+ CD28+ CD95-, Stem cell-like memory cells—CD45RO- CCR7+ CD28

+ CD95+, Central memory cells—CD45RO+ CCR7+ CD28+ CD95+, Effector memory cells—

CD45RO+ CCR7- CD28- CD95+, Terminal Memory cells—CD45RO+CCR7- CD28+ CD95

+, and terminal effector cells—CD45RO-CCR7- CD28- CD122-CD95+.

Statistics

Statistical analyses were performed using GraphPad Prism, version 7.05 (GraphPad Software,

Inc., CA). Values are presented as median and interquartile ranges. The percentage frequency

of Memory T cells and TSCM cells were compared within the placebo and Group A and Group

B vaccinees at different time points using Kruskal-Wallis test, followed by subgroup analysis

using Dunn’s multiple comparison test to identify differences between the groups. For all anal-

yses, differences were considered significant if p value was <0.05.

Ethics statement

The present study was approved by the Institutional Ethics Committee of NIRT (NIRT IEC

No. 2015013). During the trial, written statements of informed consent were obtained from

the study volunteers. The trial was supervised by the research personnel of the International

AIDS Vaccine Initiative (IAVI) and the study was conducted in accordance with the ethical

principles stated in the Declaration of Helsinki [16], Guidelines for Good Clinical Practice

(GCP) framed in the International Conference on Harmonization (ICH), and Good Clinical

Laboratory Practice (GCLP) outlined by the Research Quality Association (RQA), UK, were

adhered to during the conduct of the study.

Results

Assessment of viral inhibition activity

Viral inhibition activity was assessed with five HIV-1 isolates belonging to different clades, at

three-time points (baseline, two weeks post 1st MVA vaccination and two weeks post last

MVA vaccination). VIA response was absent in the placebo group at all-time points and in the

vaccinated individuals at baseline/pre-vaccination. Positive VIA responses were observed in

Group A and B vaccinees post-vaccination. The VIA responses were more frequent in Group

A as compared to Group B at two weeks post 1st MVA vaccination; 4 of the 6 Group A

Cellular immunogenicity of HIV-1 subtype C vaccine
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volunteers inhibited the U455 isolate (>1.5log inhibition), 2 volunteers inhibited 247FV2, one

individual inhibited IIIB and one individual inhibited ELI-1 with log10 reduction in p24 level

of>1.5. In contrast, only one individual in Group B demonstrated VIA activity against the

U455 isolate. At two weeks post last MVA vaccination, Group A volunteers exhibited VIA

activity against all 5 HIV isolates tested; 3 individuals inhibited the U455 isolate, 2 individuals

inhibited IIIB, and 3 individuals inhibited the 247FV2, CBL4 and ELI-1 isolates at>1.5log.

However, in Group B, VIA activity was seen only against two of the HIV isolates; 2 volunteers

inhibited U455 and 1 volunteer inhibited CBL4 at>1.5log. Overall, we observed much better

VIA responses in group A volunteers as compared to group B and placebo. These observations

suggest that the heterologous prime-boost vaccine regimen was more potent in eliciting a

CD8+ T cell-dependent antiviral response against different HIV isolates (Fig 2).

Induction of memory T cells subsets by vaccination

PBMC were analysed by multicolour flow cytometry to determine vaccine-induced alterations

in the frequency of memory T cell subsets [central memory T cells (CM), effector memory T

cells (EM), terminal effector T cells (TE), and naïve T cells (TN)]. Among CD4+ T cells, CM

cells were defined as CD3+CD4+CD45RO+CCR7+, EM cells as CD3+CD4+CD45RO+CCR7-

, TE cells as CD3+CD4+CD45RO-CCR7- and TN cells as CD3+CD4+CD45RO-CCR7+.

Among the CD8+ T cells, CM cells were defined as CD3+CD8+CD45RO+CCR7+, EM cells as

CD3+CD8+CD45RO+CCR7-, TE cells as CD3+CD8+CD45RO-CCR7- and TN cells as CD3

+CD8+CD45RO-CCR7+ (S1 Fig).

The proportion of CD4+ TN cells was found to be lower in Groups A and B at 1st week post

VAC-II, VAC-III, 1st week post VAC-III and 2nd week post VAC-III time points as compared

to the placebo. Similarly, decreased frequency of CD8+ TN cells was observed in the vaccine

Fig 2. Viral inhibition activity in terms of log10 reduction in p24 level at pre-vaccination, two weeks post first MVA vaccination and two

weeks post last MVA vaccination against the five HIV-1 subtypes: 247FV2 (clade C), CBL-4 (clade D), ELI (clade A/D), IIIB (clade B) and

U455 (clade A). (A) Viral inhibition activity at the pre-vaccination time point. (B) Viral inhibition activity at two weeks post first MVA

vaccination. (C) Viral inhibition activity at two weeks post last MVA booster. The box and whisker plots summarize the distribution of positive

responses (median, 1st and 3rd quartile). The y-axis represents log10 reduction in P24 antigen level. Shaded boxes represent placebo values,

white boxes represent Group A and black boxes represent group B values. The mean log10 values were compared at different time points within

the 3 groups for the 5 different viral clades using Kruskal-Wallis test, followed by subgroup analysis using Dunn’s multiple comparison test to

identify differences between the three groups. For all analyses, differences were considered significant if p value was<0.05.

https://doi.org/10.1371/journal.pone.0229461.g002
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recipients at post-vaccination time points (S2 and S3 Tables). In contrast, the frequency of

CD4+ CM cells was higher in the vaccinated groups at VAC-II, 1st week post VAC-II and 1st

week post VAC-III time points as compared to the control group, while there was no differ-

ence in the frequency of CD8+ CM cells in any of the three groups.

We observed that both group A and group B vaccines had significantly higher TE cell fre-

quencies in the CD4+ as well as CD8+ T cell compartments at all post-vaccination time points

as compared to the placebo subjects. The increase in CD8+ TE cells was found to be significant

in Group A at all post-vaccination time points as compared to group B (p = 0.003 to 0.022)

(Fig 3; S2 Table). In the CD4 compartment, the frequency of TE cells was found to be signifi-

cantly higher in group A than in group B at VAC-III and 1st week post VAC-III time points

only (p = 0.009; p = 0.001) (Fig 4; S3 Table).

Similarly, significantly elevated numbers of EM T cells was seen in Group A as compared to

Group B and placebo controls. The increase in CD8+ EM cells was found to be significantly

higher in Group A at all post-vaccination time points when compared to placebo as well as

group B (Group A vs Placebo: p<0.001 to 0.009; Group A vs group B: p = 0.002 to 0.039) (Fig

3; S2 Table). CD4+ EM cells were significantly higher in group A at all post-vaccination time

points except VAC III and 2nd week post VAC-III as compared to placebo (p = 0.019 to 0.007).

However, when compared to group B, the increase was significant only at the VAC-II time

point (p = 0.019). Group B volunteers had increased frequency of CD4+ EM cells at 1st week

post VAC-II, 2nd week post VAC-III and 48th week post VAC-III as compared to placebo

(p = 0.002; p = 0.0006; p = 0.008 respectively) (Fig 4; S3 Table). Difference in the number of

total CD8+ and CD4+ memory T cell subsets is presented in S4 and S5 Tables respectively.

These observations indicate that both the heterologous and homologous prime-boost vaccina-

tion regimens resulted in increased frequencies of peripheral effector and memory CD4+ and

CD8+ T cells, with the increase being significantly higher in group A as compared to group B.

Fig 3. CD8+ memory T cell subsets in placebo, Group A and Group B volunteers. Frequency (%) of total CD8+

memory T cell subsets in Placebo, Group A and Group B volunteers at Pre-vaccination, one week post VAC-II, and

one, two and 48 weeks post VAC-III. The superimposed dot plots summarize the % frequency of total vaccine-induced

CD8+ memory T cell subsets.

https://doi.org/10.1371/journal.pone.0229461.g003
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Induction of TSCM cells by vaccination

CD4+ TSCM cells were defined as CD3+CD4+CD45RO-CCR7+CD28+CD95+ cells and CD8

+ TSCM cells were defined and identified as CD3+CD8+CD45RO-CCR7+CD28+CD95+ cells

(S1 Fig). The percentage of circulating CD4+ or CD8+ TSCM cells were relatively small (0.15 to

0.22%) in the placebo group as well as at baseline in the vaccinated groups. Vaccination

resulted in a significant increase in the frequency of TSCM cells in both CD4+ and CD8+ T cell

compartments in both Groups A and B (Table 1A; Figs 5 and 6). CD8+ TSCM cell frequency

was significantly higher in Group A at all post-vaccination time points as compared to the pla-

cebo group (p<0.001 to 0.003), at one week post VAC-II and III, and 48 weeks post VAC-III,

as compared to Group B (p = 0.005 to 0.025) (Fig 6). CD4+ TSCM cell frequencies were signifi-

cantly higher in Group A at one week post VAC-II and one week post VAC-III time points as

compared to placebo (p�0.002), and at one week post VAC-II when compared to Group B

volunteers (p = 0.025) (Table 1B; Fig 6). There was a clear trend towards increased frequencies

of this sub-population of cells in Group A volunteers during the period of vaccination (Fig 5),

suggesting that the ADVAX/MVA prime-boost regimen induced high frequencies of CD8+

and CD4+ TSCM cells.

Discussion

The ultimate solution to the HIV epidemic is a vaccine that will substantially reduce transmis-

sion [35–37]. The risk of transmission is associated with high levels of viremia seen in acute

and uncontrolled chronic infection. Though several studies have documented an inverse cor-

relation between activated immune cells and viral load [3, 38, 39], their successful incorpo-

ration into vaccine design has not been achieved so far [37, 40]. Adaptive T cell immunity

provides the individual with a specialized defence against intracellular pathogens. CD8+ T cells

were first implicated in suppressing HIV replication when reductions in viral load were found

to correlate with the appearance of HIV-specific CD8+ T cells [41, 42]. Subsequent studies

Fig 4. CD4+ Memory T cell subsets in placebo, Group A and Group B volunteers. Frequency (%) of total CD4+

memory T cell subsets in Placebo, Group A and Group B at Pre-vaccination, one week post VAC-II, and one, two and

48 weeks post VAC-III. The superimposed dot plots summarize the % frequency of total CD4+ memory T cell subsets.

https://doi.org/10.1371/journal.pone.0229461.g004
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showed that long term non-progressors (LTNP) possess relatively high CTL and CD4+ T cell

proliferative responses despite low viral loads [42]. In SIV infection, removal of CTLs corre-

lated with an increased life span of productively infected CD4+ T cells and increased viral load,

demonstrating clearly the importance of CTLs in viral control [43]. Ongoing efforts to develop

an effective HIV vaccine are partly based on the principle that a specific antiviral CTL response

is crucial for immune control of viral replication. This principle applies to various chronic and

persistent viral infections such as hepatitis B, hepatitis C, CMV and Epstein-Barr virus [3].

The IAVI-sponsored Phase I P001 trial conducted in India explored the ability of an HIV-1

subtype C prophylactic vaccine candidate to influence the frequencies of different types of

peripheral memory T cells (CM, EM and TE) and TSCM cells in volunteers. We observed that

both the heterologous and homologous prime-boost vaccine regimens induced changes in

proportions of CM, EM and TE cells in the CD4+ as well as CD8+ T cell compartments.

Changes in the frequency of memory subsets were more pronounced in the CD8+ T cell com-

partment as compared to the CD4+ T cell compartment in both vaccinee groups, suggesting

that both the ADVAX/MVA and MVA regimens were capable of eliciting memory CD8+ T

cells responses. These responses were maintained up to 48 weeks post last vaccination, imply-

ing that the vaccine-induced memory CD8+ T cell response was long-lasting, and could poten-

tially provide long term virological control.

TSCM cells are a subset of T cells that give rise to different populations of memory T cells

(CM, EM and TE cells) [44]. Functional cellular responses of CMV, Flu, SIV and melanoma-

specific CD8+ TSCM have been previously reported [20]. Though the role of TSCM cells in HIV

infection and antiviral response has not been completely elucidated, earlier studies have

reported that elite controllers have a higher percentage of effector cells and immature memory

HIV-1-specific CD8+ T cells [45–47]. These studies suggest a role for HIV-1-specific TSCM

cells in HIV-1 infection. Interestingly, the proportion of total CD8+ TSCM cells was observed to

Table 1. Induction of TSCM cells by vaccination. A) Comparison of mean frequency (%) of CD4+ TSCM cells in Placebo, Group A and Group B volunteers. B) Compari-

son of mean frequency of CD8+ TSCM cells in Placebo, Group A and Group B volunteers.

A

Time CD4+ TSCM cells Sig.� Sub-group analysis

Placebo P (n = 4) Group A (n = 6) Group B (n = 6)

median (IQR) median (IQR) median (IQR)

Pre-VAC 0.15 (0.11–0.18) 0.19 (0.15–0.22) 0.18 (0.15–0.21) 0.247 -

VAC-II+1W 0.18 (0.16–0.21) 1.38 (1.02–1.65) 0.77 (0.52–0.97) 0.005 A vs. P (<0.001); B vs. P 0.025)

VAC-III+1W 0.16 (0.09–0.20) 1.37 (0.46–1.63) 0.69 (0.34–0.91) 0.018 A vs. P (0.002)

VAC-III+2W 0.19 (0.16–0.21) 1.16 (0.19–1.32) 0.19 (0.17–0.26) 0.191 -

VAC-III+48W 0.14 (0.13–0.24) 0.32 (0.15–0.76) 0.26 (0.18–0.42) 0.118 -

B

Time CD8+ TSCM cells Sig.� Sub-group analysis

Placebo P (n = 4) Group A (n = 6) Group B (n = 6)

median (IQR) median (IQR) median (IQR)

Pre-VAC 0.17 (0.13–0.27) 0.22(0.17–0.32) 0.18 (0.13–0.24) 0.428 -

VAC-II+1W 0.21 (0.08–0.26) 1.38 (0.87–1.89) 0.96 (0.60–1.05) 0.008 A vs. P (0.001); B vs. P (0.017)

VAC-III+1W 0.15 (0.13–0.17) 1.77 (1.15–2.06) 0.57 (0.43–1.76) 0.005 A vs. P (<0.001); B vs. P (0.025)

VAC-III+2W 0.19 (0.19–0.26) 2.92 (2.53–3.19) 1.35 (0.59–1.99) 0.003 A vs. P (<0.001); A vs. B (0.014)

VAC-III+48W 0.14 (0.07–0.16) 1.58 (0.72–1.82) 1.52 (0.77–1.79) 0.014 A vs. P (0.003); B vs. P (0.005)

�K-Wallis test was performed to analyze differences within the individual groups, and Dunn’s multiple comparison test was performed to identify differences between

the 3 groups.

https://doi.org/10.1371/journal.pone.0229461.t001
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correlate inversely with levels of plasma viremia in untreated HIV-1 infected individuals [48].

On the other hand, CD4+ TSCM cells, in addition to giving rise to different subsets of memory

T cells, also constitute reservoirs for HIV-1 infection. Hence, it may be considered that the

generation of CD8+ TSCM cells may be a better correlate of protection against HIV infection, as

these cells would not be infected with HIV-1. Our study identified a significantly higher pro-

portion of circulating CD8+ TSCM cells in volunteers who received the ADVAX and MVA or

MVA alone as compared to placebo. The overall frequency of CD4+ and CD8+ TSCM cells was

higher in group A at two weeks post last MVA vaccination as compared to the pre-vaccination

time point, suggesting that DNA priming and MVA boosting was more effective in inducing

TSCM cells and was capable of generating a long lasting memory and effector response.

CTLs are functionally defined as either polyfunctional CD8+ T cells that secrete multiple

cytokines [49], or highly proliferative CD8+ T cells that kill HIV-infected target cells [50] and

suppress HIV replication in vitro [51, 52]. Intracellular cytokine staining (ICS) and IFN-γ ELI-

SPOT assays are routinely employed to evaluate vaccine-induced cellular immune responses.

Though these responses do not correlate with in vivo virus control, they are helpful in demon-

strating magnitudes and specificities of the T cell response. Hence, an assay that directly

assesses the breadth of T cell-mediated antiviral activity against different HIV-1 isolates would

Fig 5. CD4+ TSCM cell subsets in placebo, Group A and Group B volunteers. Frequency (%) of total circulating CD4+ TSCM cells in Placebo, Group A

and Group B at Pre-vaccination, one week post VAC-II, and one, two and 48 weeks post VAC-III. The box and whisker plots summarize the %

frequency of circulating CD4+ TSCM cells (median, 1st and 3rd quartiles). K-Wallis test was performed to analyze differences within the individual

groups, and Dunn’s multiple comparison test was performed to identify differences between the 3 groups. P—Placebo; A—Group A; B—Group B; �-

p<0.05; ��- p<0.01; ��—p<0.001.

https://doi.org/10.1371/journal.pone.0229461.g005
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be best suited to evaluate the potential ability of the vaccine to induce a T cell response that

can control virus in vivo [29].

Previously, we evaluated vaccine-induced T cell responses in these groups of individuals

using IFN-γ ELISPOT and ICS assays and reported increased IFN-γ ELISPOT responses in

Group A as compared to Group B [31, 53]. We also observed significantly elevated Env and

Gag-specific mono- and bi-functional T cell responses in vaccinated individuals, with the mag-

nitude of responses being significantly higher in Group A as compared to Group B [53]. In the

present study, we analyzed the antiviral response of the vaccine-induced CD8+ T cells using

the Virus Inhibition Assay. A similar vaccine trial, the P002 trial conducted in the UK with the

same vaccine constructs, had reported that CD8+ T cell-mediated VIA activity was detected

only in Group A against three HIV isolates tested: 247FV2 (clade C), 97ZA012 (clade C), and

IIIB (clade B). Further, they reported an increase in the magnitude of the ICS response to HIV

proteins in Group A as compared to Group B.

In the present study, CD8+ T cell-mediated VIA activity was studied against five HIV iso-

lates, 247FV2 (clade C), ELI-1 (clade A/D), CBL4 (clade D), U455 (clade A) and IIIB (clade B).

VIA activity was detected in Group A against four isolates: 247FV2, ELI-1, U455 and IIIB,

whereas in Group B VIA activity was observed only against two isolates: U455 and IIIB. Four

Fig 6. CD8+ TSCM cell subsets in placebo, Group A and Group B volunteers. Frequency (%) of total circulating CD8+ TSCM cells in Placebo, Group A

and Group B at Pre-vaccination, one week post VAC-II, and one, two and 48 weeks post VAC-III. The box and whisker plots summarize the %

frequency of circulating CD8+ TSCM cells (median, 1st and 3rd quartiles). K-Wallis test was performed to analyze differences within the individual

groups, and Dunn’s multiple comparison test was performed to identify differences between the 3 groups. P—Placebo; A—Group A; B—Group B; �-

p<0.05; ��- p<0.01; ���- p<0.001.

https://doi.org/10.1371/journal.pone.0229461.g006
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volunteers exhibited viral inhibition activity at two weeks post first MVA vaccination and 5

volunteers showed viral inhibition activity at two weeks post last MVA vaccination in Group

A, while in Group B only 3 volunteers showed VIA response at two weeks post last MVA vacci-

nation alone. Our findings reveal elevated CD8+ T cell-mediated VIA activity in terms of

breadth as well as magnitude in Group A as compared to Group B. These observations support

our earlier findings of significantly higher ICS and IFN-γ ELISPOT responses in Group A vol-

unteers and also reflect the findings of the P002 vaccine trial. Findings of other studies also

suggest that the quality of the immune response was enhanced by the DNA prime, when ade-

novirus or poxvirus vectors were used as the boost [54–56]. Polyfunctionality of the T cells and

increased numbers of terminally differentiated T cells with a cytotoxic effector potential have

been reported in prime-boost vaccine regimens [57, 58]. However, VIA activity is generally

not detected after DNA, MVA or canarypox virus prime and protein-boost but may be

observed with adenovirus vectors [29, 59].

It is critical that a T cell-based vaccine generates an effective pool of memory CD8+ T cells

that can respond to acute HIV infection or effectively control chronic HIV replication [60].

Our earlier studies reported ADVAX and MVA vaccination-induced both HIV-specific CD4+

and CD8+ T cells. In the present study, we demonstrated the induction of CD8+ T cell-medi-

ated HIV-1 inhibition activity pointing to a potentially protective nature of the CD8+ T cell

response generated by the DNA prime and MVA boost vaccine regimen. Various studies have

reported that TSCM cells are critical for the generation of mature CE, EM and TE cells [19, 21,

61, 62]; however, the potential role of these cells in HIV infection and vaccination remains

unclear. In the present study, we demonstrated a significant increase in the frequency of both

peripheral CD4+ and more prominently CD8+ TSCM cells following vaccination with a greater

increase elicited by the heterologous DNA/MVA prime-boost regimen, thus clearly demon-

strating the further scope for testing the prime-boost vaccine regimen.
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