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Abstract: COVID-19, caused by a novel coronavirus, SARS-CoV-2, contributes significantly to the
morbidity and mortality in humans worldwide. In the absence of specific vaccines or therapeutics
available, COVID-19 cases are managed empirically with the passive immunity approach and
repurposing of drugs used for other conditions. Recently, a concept that bacilli Calmette–Guerin
(BCG) vaccination could confer protection against COVID-19 has emerged. The foundation for this
widespread attention came from several recent articles, including the one by Miller et al. submitted
to MedRxiv, a pre-print server. The authors of this article suggest that a correlation exists between
countries with a prolonged national BCG vaccination program and the morbidity/mortality due
to COVID-19. Further, clinical BCG vaccination trials are currently ongoing in the Netherlands,
Australia, the UK, and Germany with the hope of reducing mortality due to COVID-19. Although
BCG vaccination helps protect children against tuberculosis, experimental studies have shown that
BCG can also elicit a non-specific immune response against viral and non-mycobacterial infections.
Here, we summarize the pros and cons of BCG vaccination and critically analyze the evidence
provided for the protective effect of BCG against COVID-19 and highlight the confounding factors in
these studies.
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1. Introduction

Currently, the world is witnessing an outbreak of COVID-19, caused by a novel coronavirus,
SARS-CoV-2. The World Health Organization (WHO) declared COVID-19 as a global pandemic on
March 11, 2020. With its ability to infect through the respiratory tract and transmit through aerosol,
SARS-CoV-2 causes significant morbidity and mortality in humans worldwide. At present, there are
no vaccine or therapeutic interventions for COVID-19 [1–3].

With several ongoing clinical trials to test potential vaccines for COVID-19 at different phases [4],
a lot of debate has gone into using bacilli Calmette–Guerin (BCG) vaccine to reduce COVID-19 morbidity.
The BCG vaccine is primarily used in tuberculosis (TB)-endemic countries to protect children against
TB [5]. Apart from TB, BCG is useful against several other infectious and non-infectious diseases by
eliciting a heterologous host response and trained immunity [6–14].
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Several recently published articles have argued that BCG vaccination can reduce the morbidity due
to COVID-19 [15–17]. Remarkably, a pre-print report by Miller et al. indicates that a correlation exists
between countries with a prolonged national BCG vaccination program and the morbidity/mortality
due to COVID-19 [17]. Since a nationwide vaccination program can be beneficial to public health,
it is logical to investigate the possible association between vaccination-induced immune responses
and the morbidity/mortality of an ongoing pandemic, such as COVID-19. Concomitantly, clinical
BCG vaccination trials have been started in a few countries, including the Netherlands, Australia,
the UK, and Germany. These trials are primarily aimed at evaluating the protective efficacy of the
BCG vaccine against SARS-CoV-2 infection in healthcare workers and/or the elderly population [18].
In contrast, the World Health Organization (WHO) released a note on 12 April 2020, stating that there
is no evidence that BCG vaccination protects people against COVID-19 [19].

It is our perspective that the current scientific evidence for the usefulness of a BCG vaccination in
controlling COVID-19 death is insufficient and warrants additional preclinical and clinical data.
Recent reports suggest that BCG vaccination negatively correlates with the death rate among
COVID-cases [17,20,21]. These studies are mostly statistical analyses of country-wise data on BCG
vaccinations and deaths due to COVID-19. Although these reports are useful to gain some insight
into the correlation between BCG vaccination and COVID-19 deaths, they also have limitations.
For example, a study by Miller et al. has taken a correlational approach, based on a simple and
specific study design with a multivariable analysis. The authors attempted to positively correlate
COVID-19 mortality to the long-standing national BCG vaccination policies adopted in lower- and
middle-income countries, compared to the higher income group countries, such as the USA, Italy,
Lebanon, the Netherlands, and Belgium, which do not have a national BCG immunization policy.
The study assesses the number of deaths (per million inhabitants) due to COVID-19 and reports that
the middle- and high-income group countries with BCG vaccination policies had much lower mortality
than the same group without a BCG vaccination. Further, the study presents a positive correlation
between the start time of the mandated BCG vaccination policy and the reduced mortality rate due to
COVID-19. The study eventually observes that adopting a robust and national-level BCG vaccination
policy slows down the spread of COVID-19 in the middle- and high-income countries as compared to
the countries in the same group with no universal BCG vaccination policy [17]. A similar approach and
conclusion have also been reported by Klinger et.al [21]. Together, these studies allude to the possible
beneficial effects of adopting a prolonged, nationwide BCG vaccination policy as a new protective
measure to control the mortality of the current COVID-19 pandemic. However, as the authors of these
studies acknowledged, there are several confounding factors that should be taken into consideration
(see Discussion in Section 4 below) before concluding that the BCG vaccination indeed can significantly
reduce the number of deaths due to COVID-19. In the present article, we summarize the immune
response elicited by BCG and highlight some critical issues that are important in evaluating the
potential benefit of the BCG vaccination in preventing mortality among COVID-19 cases.

2. BCG and Immune Response to Infection: A Mixed Bag

BCG is a live attenuated strain of Mycobacterium bovis, a member of the pathogenic
Mycobacterium tuberculosis (Mtb) complex organisms. At present, BCG is the only vaccine approved by
the WHO to prevent TB, a deadly contagious bacterial disease of humans. The original BCG vaccine
was developed by Albert Calmette and Camille Guerin at the Pasteur Institute of Lille, France, between
1908 and 1921 after several hundred passages, and has been in use since 1921 [22].

Initially, BCG was given to infants by the oral route, and later on changed to a subcutaneous
route [22]. Since the development of the original strain, 49 substrains of BCG have been produced and
used worldwide [23]. BCG is the most widely administered vaccine, with about 90% coverage of the
world population [24]; over 120 million people receive BCG each year. This vaccine shows a varied
success rate (0% to 80%) in preventing TB in children [25–29]. Although BCG is protective against
severe forms of TB in infants and children, the protective immunity generated by BCG wanes after
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10–15 years of vaccination [30]. The South Indian BCG trial has shown that BCG vaccination failed to
offer any significant protection against the adult form of pulmonary TB [31]. However, randomized
and case-control trials have shown a consistently high protective efficacy for BCG (60% to 80%) against
severe forms of TB, such as miliary TB and TB meningitis in children [32,33]. Further, the absence of
prior exposure to any mycobacteria can increase BCG’s efficacy against pulmonary and, to a certain
extent, miliary and meningeal TB [30]. This pre-exposure either masks or blocks the effect of BCG and
considered an important reason for the variable efficacy of BCG [34]. Thus, in TB-endemic countries,
BCG is given to 90% of neonates and infants at birth, except for those with symptomatic HIV infections,
as part of the national childhood immunization program [24]. A BCG atlas database is available to
check the universal BCG vaccination policy status worldwide [5,35].

3. A Case for the Non-Specific Immune Response of BCG for Protection against COVID-19

In addition to eliciting an antigen-specific immune response against TB, BCG has also been reported
to exhibit non-specific, immunomodulatory effects against diverse diseases, including nematode,
fungal, and viral infections, bladder cancer, allergy, and asthma [6,7,11,14]. There are two primary
mechanisms postulated to explain BCG’s non-specific effects: heterologous immunity and trained
immunity. In heterologous immunity, it is proposed that the vaccine antigens elicit a cross-reactive
host response and antibody production against other pathogens. Several vaccines, including the
BCG, have been shown to produce a heterologous protective immunity, leading to an improved
response against non-mycobacterial pathogens. In trained immunity, the innate immune cells, such
as macrophages, can be trained to develop a proinflammatory response upon stimulation with BCG,
which can also help protect the host against subsequent infection by non-mycobacterial, fungal or viral
pathogens. However, the contribution of such a non-specific immune response elicited by BCG, in the
setting of COVID-19, is not fully understood.

4. Implied Effects of BCG on the Heterologous Immune Response

In vitro and in vivo studies using fungal, viral, and bacterial infectious agents have shown that the
innate immune cells, such as monocytes, dendritic cells, and NK cells, can be trained, such that these
cells can non-specifically protect against infection [11]. BCG, Lipopolysaccharide (LPS), and Glucan,
as well as other biomolecules derived from fungi and bacteria, have been shown to train the innate
immune cells [13]. This T- and B-cell-independent immunity conferred by BCG is believed to be
characterized by metabolic alterations, the upregulation of innate immune receptors, such as TLRs
(toll-like receptors), and cytokine responses, which are primarily controlled by epigenetic modifications
of the stimulated host cells [6,11,12,14,36]. Most of the data for the BCG-induced trained immunity
were generated using short-term (up to a week) in vitro stimulation assays with primary cells or
cell lines that showed an increased production of proinflammatory cytokines, including TNF-α and
IL-1β [8–10]. The BCG-induced trained immune response in human blood-derived macrophages was
noted for up to three months but no longer than a year [9].

There have been various epidemiological, clinical, and immunological studies that reiterate BCG’s
effects in protecting against viral infections. Studies using animal models of DNA and RNA viruses,
including herpes simplex, influenza A, vaccinia, and Japanese encephalitis infection, have shown
enhanced protection by BCG vaccination [37]. However, the challenge of animal models of BCG
vaccination and viral infections is that they do not reflect the complexities in human populations and
cannot be considered equivalent.

Epidemiological and clinical studies suggest that vaccination with some strains of BCG can reduce
the viral loads in individuals inoculated with attenuated Yellow fever virus (YFV) or the Influenza
H1N1 virus, which indicates a possible role for heterologous and/or trained immunity [37,38]. However,
the YFV study was conducted in healthy volunteers of 25–35 years of age, who received the BCG vaccine
for travel to TB-endemic countries. This study design is strikingly different from conventional neonatal
BCG vaccination programs adapted in TB-endemic countries. Further, the heterologous immune
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response of BCG inferred from in vitro experiments using LPS-stimulated PBMCs, and in vivo studies
using the severe combined immunodeficient (SCID) mice are inadequate to explain the complexity
observed in a population of neonatal BCG-vaccinated individuals. Thus, more robust longitudinal
cohort studies are needed to evaluate both BCG-induced heterologous protection and the mechanism
of trained immunity in humans.

Further, in a population with varied age groups, the effect of BCG-induced immunity would wane
disproportionally and offer a pool of subjects who would respond differently to a non-mycobacterial
infection. Additionally, the key cytokine implicated in BCG’s cross-protection, IL-1β, is neither specific
to trained immunity nor is sufficient to elicit a robust protective immune response against a range of
pathogens. The in vitro assays used in these studies are preliminary and only indicate an immune
response under the tested conditions [39,40]. Interestingly, previous research using antisera and T-cells
from immunized mice have suggested that none of the childhood vaccines, including BCG, oral polio
vaccine (OPV), hepatitis B vaccine (HBV), measles, mumps, rubella and varicella vaccine (MMRV),
and others, have shown any significant cross-protection against SARS-CoV infection, which caused an
epidemic in 2003 [40].

Although arguments made based on a statistical analysis of epidemiological data for the correlation
of BCG and COVID-19 at different stages of this pandemic are interesting, and may have implications
for controlling the COVID pandemic, there are some confounding points concerning the correlation
between BCG vaccination and its protective immune response against COVID-19, as listed below:

(1) Metrics for quantifying the BCG vaccination policies: The parameters for defining national BCG
vaccination policies are based on assumptions. A lack of any standard, quantitative metric
mentioned to evaluate the successful enforcement of the BCG vaccination policy and using
income levels as a surrogate indicator to reflect the success of the vaccination policy, sets a
weak premise for the correlation analysis. Additional socio-economic parameters such as the
overall educational qualification of the study population and job definitions should be considered
while studying the confounding effect of socio-economic differences. Further, the metrics for
quantifying BCG vaccination is confounded by a misclassification bias and/or measurement errors
(see below). Thus, multiple, quantitative metrics, including income, nature of the healthcare
system, health-seeking behavior in the community, cultural dogma and social setting, should
be considered when evaluating the success of universal BCG vaccination policies [39]. Further,
there is variation in BCG vaccination coverage among countries of different incomes. For example,
lower-middle income group countries, such as India, have an 88% coverage, while low-income
countries have a 78% coverage [41]. Belgium, one of the high-income group countries included
in the Miller et al. study, has used BCG for 67 years, until 1989, then vaccination was targeted
for a specific group of people, such as migrants. Since 2013, the BCG vaccination is considered
optional in Belgium. A similar situation has also been reported for Italy, another high-income
country. Therefore, the current lack of implementation of a universal BCG vaccination should not
be construed as no BCG vaccination at all during any period within the average life expectancy
period of a country (e.g., Belgium and Italy). In these countries, an analysis of the COVID-19
death rate among vaccinated and non-vaccinated individuals would provide a clear picture on
the beneficial effect of BCG vaccination. In addition, the correctional factors added for statistical
analysis of epidemiological data introduces a potential bias. For example, upper-middle and
high-income group countries were combined as a single group for analysis, while low-income
group countries were ignored in the report by Miller et al. [17]. Similarly, the Klinger et al. study
stratified the age of study population into: below 24 years, 25–64 and above 65 years [21] to
analyze the impact of the BCG vaccination on the 4-month (29 January to 21 May 2020) death
rate of COVID-19. There was no rationale given for the assumptions made in these studies for
such classification of data. Further, in most of the TB-endemic countries, a BCG vaccination is
given at birth, and the vaccine-induced immunity wanes with time up to a decade. Even in
trained immunity studies, the protective effect was shown only for about a year. Thus, there is
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a disconnect between the biological factors associated with neonatal national BCG vaccination
programs and the artificially introduced values to adjust for “factors” in the statistical analysis,
which could skew the interpretation of the real impact of BCG vaccination in reducing the
mortality due to COVID-19.

(2) Supporting correlational data: There have been insufficient details presented on the
epidemiological studies regarding confounding factors that correlate with the income metrics
of nations to their BCG vaccination policies. Without this, the direct correlation (BCG vaccine
policy vs. COVID-19 cases/deaths) assumes little significance. Similarly, there is a disparity in
average life expectancy between low-, middle- and high-income group countries. For example,
Italy’s (an upper-income country) average life expectancy is 84.01 years, whereas it is 70.42
for India, a country with a low-middle income. This disparity in life expectancy is a crucial
confounding factor. Since the risk of death from COVID-19 increases with age beyond 65,
the life expectancy is an important factor, but was not considered in the statistical analysis of the
epidemiological studies.

(3) Outlier analysis: The explanation for China and Japan as outliers is incomplete and insufficient.
The disbanding and weakening of the policy during China’s Cultural Revolution (a subjective
point) make the age of the subjects’ fatalities to be roughly 50s or younger. However, China’s
data [42] on COVID-19 fatalities (one of the earliest reports to become public and widely cited)
have shown increased mortality in the elderly population, primarily in their 70s; the highest death
rate was seen among individuals of >80 years. These data have now been confirmed through
other studies. Similarly, Japan has seen a spike in the number of COVID-19 cases and gone into a
National Emergency [43].

(4) False sense of security from BCG-induced trained immune response: The role of the BCG vaccine
in training innate immune responses has long been debated and is still fraught with caveats [15,44].
For the correlation to be translated into causation, the mechanisms of BCG vaccine-induced
trained immunity should be consistent with the findings in human clinical studies. Since this is
yet to be definitively settled, it is presumptive to hint at the success of a national BCG vaccination
policy, which pertains mostly to neonates, in controlling the morbidity and mortality due to
COVID-19 in mostly adults. Further, this would deliver a false sense of security among the
BCG-vaccinated population with COVID-19 [22,44].

(5) BCG strain variation and protective effect: It remains unclear if the protective effect of BCG is
targeting the SARS-CoV-2 per se or the secondary health effects caused by the virus, including
sepsis or inflammation. Further, the strain variation in BCG across different countries would
have elicited different levels of the protective immune response to a wide range of pathogens in
various populations. Similarly, exposure to environmental microbes, particularly non-tuberculous
mycobacteria (NTM), is another major factor that shapes the host immune response. However,
the impact of such response in modulating the heterologous protection conferred by BCG is not
fully understood. Finally, the host immune response contributed by differential environmental
exposure, such as air particulate matter and toxic pollutants in various countries, on SARS-CoV-2
infection remains unknown. Understanding these critical confounding factors is vital to delineate
the contribution of BCG-induced immune protection against COVID-19.

(6) Effect of immigrant population with childhood BCG vaccination: Some high-income countries,
such as the USA, have a significant immigrant population who would have received a childhood
BCG vaccination in their country of birth [45,46]. The proportion of such a population would
affect the disease transmission and mortality of COVID-19. Further genetic diversity arising due
to ethnic differences can have a major impact on interpreting these data. However, these aspects
have not been addressed in any of the epidemiological studies that attempted to associate BCG
vaccination with reduced COVID-19 deaths.

(7) Data coverage: Other confounding factors, such as the accuracy and reliability of data on the
number of COVID-19 cases and deaths, and variability in the nature and coverage of COVID-19
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testing procedures across different countries are not adequately discussed in the correlation
studies. Age, sex or vaccination for other infections, such as polio, mumps, rubella, etc., are also
confounding factors, as discussed in a recent article [35]. In fact, in another study, the authors
found a lack of correlation between countries giving BCG vaccinations and mortality due to
COVID, when the testing rates were included in the statistical analysis performed independently
in their study [47]. Consistent with this study, Hamiel et al. reported that the outcome of
COVID-19 in adults with or without a prior BCG vaccination within a single country (Israel) was
not statistically significantly different [20]. Thus, epidemiological and ecological studies that
create a fallacy due to possible inference of observation from in vitro experiments to individuals
with heterogeneous immune responses and extending the study group averages to the total
population should be interpreted with great caution.

(8) Additional parameters—Though the epidemiological studies recognize the influences of other
parameters contributing to the disparities in fatalities across nations—e.g., standard of care—there
are additional factors that are significant enough to skew the analysis. For example, there is
a disparity in the definition of “Deaths due to COVID-19” and the reporting system across
different countries. The incidence of co-morbid conditions, such as HIV infection, diabetes,
and hypertension can impact the death rate due to COVID-19. However, the current International
Form of Medical Certificate of Cause of Death, as prescribed by the WHO, does not discriminate
deaths due exclusively to SARS-CoV-2 infection or due to complications from co-existing
morbidities in COVID-19 cases [48]. Thus, there is a possibility for variation between the number
of reported deaths and the actual number of deaths due to COVID-9 among different countries.

(9) The stage of the spread has changed widely for different nations [35,49] and it has been fluctuating.
Further, the authors have not specified the names of the nations in other income categories,
including key countries, such as India, to evaluate the claims more thoroughly. For example,
as of 2 October 2020, the cumulative cases in the USA (high-income group without a national
BCG vaccination program) was 7,160,476 and the cumulative death rate due to COVID-19 was
205,666 (2.872%), while these values for India (low-middle-income group with national BCG
vaccination program) were 6,394,068 and 99,773 (1.560%) [50]. However, the first reporting of
cases/deaths due to COVID-19 occurred much earlier in the USA, compared to India, which has
the second most COVID-19 deaths as of 2 October 2010. The trend of the mortality rate would
change in the coming days/weeks/months. Therefore, it is very premature to conclude that
BCG protects against COVID-19 deaths in countries with a national BCG vaccination policy.
Infrastructure readiness—in response to the inundation of the healthcare system by a sudden
surge in cases and hospitalizations, including the number of beds and ventilators available and
accessible. Stockpiling of resources—access to healthcare resources, including the availability
and access to COVID-19 test kits, the sensitivity and specificity of such diagnostic kits, personal
protective gears, as part of pandemic preparedness, are unclear. The knowledge of public—the
health-seeking behavior among the men and women of different countries varies strikingly,
which is closely related to the social, cultural, and literacy rate, but this factor was not accounted
for in the epidemiological studies [17,21].

5. Conclusions

The ability of BCG to confer protection against COVID-19 is an exciting concept that requires
convincing evidence from extensive preclinical and clinical studies. Our perspective has also been
supported by recently published articles [16,35,47] that suggest the need for more scientific evidence
for the protective efficacy of BCG against COVID-19. Although it is tempting to proclaim that BCG
can prevent COVID-19 deaths, there are several confounding factors, and circumstantial evidence
exists in studies, such as that of Miller et al. [17], which precludes any valid presumptions on the
causal link between BCG vaccination and protection against COVID-19. Several other groups have
extensively debated the role of BCG in defense against SARS-CoV-2 infection. Most of them converge
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at the point that the ecological and epidemiological data would be insufficient and clinical trials are
pertinent. The correlation of BCG immunization data with COVID-19 cases and deaths is primarily
biased by vaccination policy, economy, age, sex, ethnicity, calculation of mortality data, availability
of the healthcare system, pandemic awareness, testing rates, proper reporting of cases, including
their mortality and reiterated by many groups worldwide. In future studies, it would be interesting
to see the effect of BCG on SARS-CoV2 infection and COVID-19 through proper clinical cohort
studies [2,3,16–18,20,21,35,36,39,47].
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