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The end TB strategy reinforces the essentiality of readily accessible biomarkers for early
tuberculosis diagnosis. Exploration of microRNA (miRNA) and pathway analysis opens an
avenue for the discovery of possible therapeutic targets. miRNA is a small, non-coding
oligonucleotide characterized by the mechanism of gene regulation, transcription, and
immunomodulation. Studies on miRNA define their importance as an immune marker for
active disease progression and as an immunomodulator for innate mechanisms, such as
apoptosis and autophagy. Monocyte research is highly advancing toward TB
pathogenesis and biomarker efficiency because of its innate and adaptive response
connectivity. The combination of monocytes/macrophages and their relative miRNA
expression furnish newer insight on the unresolved mechanism for Mycobacterium
survival, exploitation of host defense, latent infection, and disease resistance. This
review deals with miRNA from monocytes, their relative expression in different disease
stages of TB, multiple gene regulating mechanisms in shaping immunity against
tuberculosis, and their functionality as biomarker and host-mediated therapeutics.
Future collaborative efforts involving multidisciplinary approach in various ethnic
population with multiple factors (age, gender, mycobacterial strain, disease stage, other
chronic lung infections, and inflammatory disease criteria) on these short miRNAs from
body fluids and cells could predict the valuable miRNA biosignature network as a potent
tool for biomarkers and host-directed therapy.

Keywords: monocyte and macrophage miRNAs, tuberculosis, differential expression, immune regulation,
autophagy and biomarkers
INTRODUCTION

Tuberculosis being the life-threatening disease caused byMycobacterium tuberculosis (MTB) is intricate
to understand their mycobacterial-mediated host immune subversion. The intracellular nature and
delayed cell division ofMTBadded access to dodge the hostmicrobicidal effect for its survival. The host’s
innate defense ability and the pathogen’s strategy in evading the host’s immunity determine the sequel of
TB infection (1). MTB establishes infection through multiple modalities, such as i) circumvent
phagolysosome fusion and phagocytosis destruction; ii) neutralize the acidic environment (2, 3);
iii) blocks the formation of the apoptotic envelope (4); iv) inhibits the plasma membrane repair,
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leading to the spread of infection through macrophage necrosis
(5); v) suppresses activation of immune cells and antigen
presentation; vi) limits the proinflammatory response by
restricting proinflammatory cytokines; and vii) modulates the
disease responsive genes and miRNAs through their targeted
pathways. The disease becomes complex as the stages of infection
are varied from latency to drug resistance because of the evolution
of MTB strains. One third of the population exhibit latent
infection, in which MTB remains dormant for a long period and
becomes susceptible to the active disease under immune
compromised condition. This latency is a menace to mankind as
the diagnosis and its effective treatment toward breakdown of the
disease in future need unbridled enthusiastic investigations.
However, the management of the latent condition can be made
possible with public awareness by improving the incidence of TB
determinants, such asmalnutrition, poverty, smoking, and diabetes,
or through the development of new treatment or vaccines (6). The
emergence of drug-resistant Mycobacterium due to poor treatment
adherence (acquired resistance) and the transmission of drug-
resistant strains (primary resistance) is another peril in TB
research toward the end TB strategy (7). The multi-drug resistance
and its treatment pose multiple challenges as it requires prolonged
treatment duration, complex drugs (second-line fluoroquinolones)
thatmay affect adherence alongwith lower treatment success rate (6).
Other co-morbidities, like AIDS and diabetes, intensify TB
disease pathogenesis.

Mononuclear cells (monocytes/macrophages) are professional
phagocytic defenders against TB infection (8). The disputed
behavior of monocytes as a defender against antimycobacterial
activity exhibited by CD16neg subset and habitat for MTB
promoted by CD16pos subset is well accepted for TB disease (9,
10). The disease-specific perturbation in the mononuclear cell
subsets and their immune phenotypes contributed to underlying
pathophysiology and as biomarkers for MTB infection. However,
the unresolved mechanisms and the pathways affected can be
studied through the molecular impression of these subsets from
omics platforms in a quest for differentially expressed mRNAs and
miRNAs. miRNAs are short, biologically conserved noncoding
RNAs that participate in the regulation of inflammatory response,
tumorigenesis, and other biological processes. Several studies
focused on miRNAs revealed altered miRNA levels during
infection and their impact in modulating immune functions
within macrophages from TB patients (11–13). Thus, miRNA
studies open up new avenues and fascinate the researchers for
constructing miRNA-based vaccines, biomarkers, and host-directed
therapies. This review is focused on monocyte/macrophage
miRNAs, their differential expression, regulatory function, and
biomarker utility in tuberculosis disease.

miRNAs

Micro RNAs are discovered as biologically conserved, short
noncoding RNAs (14–16) that constitute 18 to 25 nucleotides
in length. This groundbreaking innovation by Ambros and
Ruvkun prompted the researchers to investigate their functional
behavior toward host immune regulation and disease pathogenesis,
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which resulted in the exponential growth of published studies on
miRNA reported by Almeida et al. (17).

miRNAs work as mRNA repressors inhibiting protein
synthesis (18), translational activators (19), and molecular
decoys for RNA-binding proteins (20), depending on the
environment and cell type. The processing, maturation,
expression, and action of miRNAs are regulated through
multiple mechanisms: a) single-nucleotide polymorphism
interfere with the processing and maturation of miRNAs that
affect their expression profile (21); b) modulation of epigenetic
mechanisms, such as histone acetylation and DNA methylation,
influence the transcriptional rate of miRNAs (22); c) impairment
in the mRNA-miRNA interactions by the competition of
miRNAs with cellular factors and mRNAs with other
competitive RNAs (pseudogenes, long non-coding RNAs, and
circular RNAs) (23, 24); and d) occurrence of miRNA editing
through nucleotide modification by adenosine or cytidine
deaminases (21, 25). miRNA research and transcriptomic
platform enabled the disease-mediated deregulation of
miRNAs and their targeted pathways in multiple diseases,
including cancer (26, 27), cardiovascular diseases (28, 29),
autoimmune diseases (30, 31), and infectious diseases (32, 33).
MONOCYTE AND MACROPHAGE miRNAs

The disease-oriented modification for any microbial infection is
visualized primarily on monocytic cell lineage as being the first-line
defenders of innate immunity. Immunological aspect-derived
alterations in the subset composition of monocytes/macrophages
decipher the role of a pathogen in the peripheral compartment.
However, the stimulus for the alteration is better studied through
their responsive mRNA and miRNAs. miRNA research for TB is
advancing toward a proper understanding of diseasemechanism for
better prognosis and early prevention. The immune efficiency and
other cellular processes of monocyte/macrophages are governed by
various miRNAs in both healthy and disease states (34).

Many reports available for the miRNAs mediated monocytic
biological functions, such as tissue homeostasis, signaling, cell
differentiation, apoptosis, cell motility, cytokine production,
inflammatory responses, resolution of inflammation, and other
immune responses (35–40). A trio of miRNAs constituting miR-
146a, miR-21, and miR-155 are the principal regulators of
inflammatory pathways in myeloid cells (41). miR-511 was
identified as the putative positive regulator of Toll-like receptor 4
during monocyte differentiation by Tserel et al. (42). miR-214, as
suggested by Li et al., targets the phosphatase and tensin homolog in
monocyte survival induction during advanced glycation (43). miR-
20a, miR-106a, and miR-17 of miR-17/92 and miR-106a/363
clusters are involved in tuning the proinflammatory cytokine
production, infiltration of macrophages, and phagocytosis through
targeting the expression of signal-regulatory protein alpha (44).
Upon Notch activation, miR-148a-3p promotes M1 polarization by
hindering M2 activation (45). Myeloid cell differentiation to
granulocytes or monocytes is governed by miR-223 with negative
control on NLRP3 inflammasome activity (46).
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The intense research on miRNA profiling of monocyte subsets
delivered their unique profile and regulated functions. Dang et al.
deciphered the role of miR-432 in apoptotic potential and miR-19a
in cell motility. They also observed that miR-345 was involved in the
inflammatory responses by targeting RelA. Besides, upregulated
miR-34 in CD16+ monocytes are suggestive of their differentiation
ability to dendritic cells by altering the expression of Wingless-Type
MMTV Integration Site Family, Member 1 (WNT1), and Jagged 1
(JAG1) (34, 47). Richard et al. focused on the sequencing of
miRNAs among monocyte subsets in humans and mice to
identify their role in monocyte heterogeneity. From their work,
they suggested three miRNAs—miR-21, miR-150, and miR-146a—
as immune regulators that mediate resolution of inflammation in
the myeloid cells (48). MicroRNA profiling of intermediate
monocytes (CD14++ CD16+) yielded a unique miRNA profile, and
their connected pathways are involved in gene regulation, TLR, and
cytokine-mediated signaling, phagocytosis, antigen processing, and
presentation, as well as lipid and triglyceride metabolism (49).
MicroRNA AS A PROMINENT IMMUNE
REGULATOR OF MACROPHAGE
MECHANISMS DURING TB

miRNAs regulate about 60% of mammalian genes through its
effective binding to 3′ UTR on mRNA and leads to translational
repression and mRNA degradation (50, 51). Most of the cellular
Frontiers in Immunology | www.frontiersin.org 3
functions in humans are governed by single or multiple miRNAs.
The emergence of miRNA research uncovered the possibility of
pathogen (specially their cell wall components) induced alteration
of miRNA levels (52). The altered miRNA profile could enhance
the disease progression by modulation of the innate and adaptive
responses through the hindrance of cell differentiation (53). The
distinctive role of miRNA in the maintenance of immune
homeostasis and activation of immune defense is largely studied
(54). Upon MTB infection, several miRNAs modulate the host
mechanism, either favoring the host or the pathogen. In most
cases, the underlying causes for host immune evasion by the
Mycobacterium are associated with miRNAs. The host signaling
pathways, cytokine production, and killing machinery are
adversely affected by miRNAs as represented in Figure 1.
miRNAs IN SIGNALING PATHWAYS AND
CYTOKINE PRODUCTION

The prime innate defense recognition starts with the Toll-like
receptors (TLRs) upon induction with pathogen-associated
molecular patterns (PAMPs). However, this initial priming is
affected by multiple miRNAs during MTB infection. TLR/MyD88
activation and cytokine response are inhibited by miR-30a inMTB-
infected THP-1 cells (55). TLR3 signaling is attenuated by miR-27a
through targeting TICAM1 and c-Abl-BMP signaling (56). Survival
of Mycobacterium is favored through the upregulation of miR-26a
FIGURE 1 | Host immune regulation by monocyte and macrophage miRNAs during tuberculosis.
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and miR-132 induced by live and attenuated MTB that negatively
controls p300 mRNA in human monocyte-derived macrophages
(human MDMs). miR-132 and miR-26a dampen the host
responsiveness toward IFN-gamma genes, phagocytosis process,
and decreases the HLA-DR and FCgammaR1 levels (57).
Inhibition of NF-kB pathway with the hindered downstream
secretion of cytokines, chemokines, and NOS is achieved through
the increased expression of A20 (TNFAIP3) by downregulated let-7f
induction mediated by ESAT-6 in both in vitro and in vivo
conditions (58). miR-223 and miR-146a also negatively control
theNF-kBpathway inMTB-infectedmacrophages and suppress the
proinflammatory response and the clearance of pathogen (59–62).
Infection with BCG induces elevation of miR-21 via NF-kB and
ERKpathways that target IL-12p35mRNA throughwhich it inhibits
IL-12 production and T-cell priming function by APCs (63).

The activity of miR-155 is focused on various cell types, such as
macrophages, dendritic cells, and T cells. ESAT-6 induces miR-155
in a time- and dose-dependent manner, which downregulates
SHIP1, leading to an ultimate increase of the AKT phosphorylation
and, thus, exerts pro-survival of MTB on macrophages. Host IL-6
production and Cox-2 activity are limited by upregulatedmiR-155, as
the Cox-2 is essential to prevent necrosis by generating PGE2 and
restricting lipoxin A4 (LXA4) (1, 64). The mycobacterial component,
such as Lippo Mannan from virulent MTB and M. smeg, induces a
differential response in human MDMs. TB-LM induces higher miR-
125b expression that targets the TNF mRNA and inhibits TNF
biosynthesis through inhibition of TLR-2–mediated miR-155
expression, whereas M. smeg LM induces miR-155 expression and
downregulates miR-125b and SHIP1, thereby increasing-PI3K/Akt
signaling and TNF production followed by an enhanced
proinflammatory response (50). The interpretation of the role of
miR-155 in pro-inflammatory responses is quite contradictory as
suggested by infection studies with virulentMTB andM. smeg LM (1,
50). This strongly reinforces the synchronized regulatory effect of
miR-155 along with a host of miRNAs and, thus, cannot be studied
alone (1). An inverse correlation was seen with miR-144 and TPl2
protein levels as the downregulation of miR-144 in MTB-infected
humanMDMs targets TPL2 mRNA, and their enhancement leads to
activation of ERK1/2 phosphorylation and downstream IL-1b, IL-6,
and TNF a production (65). Pro-inflammatory cytokine response is
suppressed through upregulated miR-32-5p targeting Follistatin-like
protein (FSTL1) (66). Downregulation of miR-365 is inversely
correlated with IL-6 levels in active TB patients (67).
miRNAs IN HOST KILLING MACHINERY

The human host has an enormous killing machinery, like
phagocytosis, apoptosis, and autophagy, and so on, for the
invading pathogen. The intracellular MTB, however, exploits
the host defense through various strategies. The recent
transcriptomic approach sheds light on miRNA-based
modulatory responses by Mycobacterium. The phagocytic
function of macrophages is attenuated in the different stages by
the Mycobacterium-induced miRNAs. The bacterial encounter
and imbibe are affected through N-wasp by miR-142-3p. N-wasp
is an actin-binding protein essential for actin dynamics in the
Frontiers in Immunology | www.frontiersin.org 4
phagocytosis process that was negatively regulated by
upregulated miR-142-3p in J774A.1 cell line and primary
human macrophages during MTB infection (68). Mononuclear
cell function and phagocytosis are inhibited in active TB patients,
where miR 23a-3p is downregulated. miR-23a-3p targets IRF1/
SP1 through TLR4/TNF-a/TGF-b1/IL-10 signaling (69). The
principal lysosomal enzyme of phagocytosis process for MTB
clearance is cathepsin proteases. miR-106-5p targets the 3′ UTR
cathepsin and suppresses the lysosomal activity in MTB-infected
macrophages (70).

The downstream killing machinery of phagocytosed pathogen
actively occurred through apoptosis of infected macrophages.
Macrophages infected with Beijing strain demonstrate its
virulence by escaping from host apoptosis and macrophage
lysis through miR-485-3p (71). Upon infection with MTB,
RAW264.7 macrophages establish attenuated apoptosis
through the reduction of miR-20b-5p and elevation of its
target Mcl-1 (72). Increased miR-223 expression in
macrophages of active TB patients negatively suppresses
forkhead box O3 (FOXO3) to inhibit apoptosis (62). The
secreted protein MPT64 inhibits apoptosis of RAW264.7
macrophages via NF-kB/miR-21/BCl-2 pathway (73).
Inhibition of apoptosis through the downregulation of Fas
protein is demonstrated in THP-1 macrophages mediated by
upregulated let-7b-5p (74). The decrease in the apoptotic
monocytes of active TB patients and decreased apoptosis in
THP-1 cells are mediated through the downregulation of FOXO-
1 by miR-582-5p (75). Some of the miRNAs positively promote
apoptosis for enhanced mycobacterial clearance. For example,
reduction of miR-20a-5p is observed in THP-1 macrophages and
CD14+ monocytes of active TB patients. Reduced miR-20a-5p
inversely increases Bim expression through its target JNK2,
which could promote apoptosis (76). Infection of macrophages
withM. bovis BCG results in elevated miR-155 expression, which
could induce apoptosis through PKA signaling by inhibiting
PKI-a (77). Sp110-mediated suppression of miR-125a in
RAW264.7 macrophages enhances the expression of Bmf,
which could induce apoptosis (78). Upregulated miR-27b
enhances p53 signaling, thus favoring apoptosis and bacterial
killing by downregulating Bag2 (79).

Autophagy is a highly regulated eukaryotic cellular pathway in
which intracellular pathogens are trapped in autophagosomes and
degraded in lysosomes. Induction of xenophagy (a selective form
of autophagy against microbes) in monocyte-derived
macrophages is one of the innate immune mechanisms to
intracellular pathogens, such as MTB (80). However, MTB is a
successful intracellular pathogen and can escape from host
responses by expression of some of the miRNAs and affects
autophagy machinery (81). Certain miRNAs control both
mycobacterial survival and autophagy pathways by targeting
their proteins within macrophages through its altered expression
(82, 83). miRNA-33 and miRNA-33* inhibit the fusion of
lysosome with bacterial endosome by targeting ATG5, ATG12,
LC3B, and LAMP proteins and lipid metabolism by targeting
transcription factors FOXO3 and TFEB (84). The occurrence of
active TB is suggested because of the suppression of
autophagosome-lysosome fusion in macrophages by miR-423-5p
June 2021 | Volume 12 | Article 667206
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through post-transcriptional regulation ofVPS33A (85). Active TB
patients and MTB-infected mice abundantly express miR-27a,
which blocks the Ca2+ signaling through ER-located Ca2+

transporter protein CACN2D. Blockade of Ca2+ signaling
inhibits the formation of autophagosome (86). The autophagy
protein, DRAM2, promotes PtdInt3K, which initiates the
nucleation of auto phagophore formation. In human and
murine monocytes or macrophages, MIR144/hsa-miR-144 and
miR-125a help in mycobacterial survival by forming a complex
with the 3′ UTR of DRAM2 mRNA (87, 88).

TB infection triggered the expression of a new type of
miRNA, i.e., miR-1958, which silences the ATG5 in RAW264.7
cells (89). miR-129-3p favors MTB survival by inhibiting ATG4B
(90). miR-20a promotes BCG survival by affecting the expression
of both ATG7 and ATG16L1 (91). miR-17-5p blocks autophagy
by blocking ULK1 in BCG-infected RAW264.7 cells (92). Chen
et al. showed that miR-30a inhibits the autophagy pathway and
negative correlation between Beclin and miR-30a (93). miR-889d
affects the tumor necrosis factor-like weak inducer of apoptosis
(TWEAK), which maintains the granuloma formation and
promotes the maturation of AMPK (94). miR-125a-5p
overexpression was observed in M. avium–infected THP1-
derived macrophages and targets STAT-3, which activates the
autophagy (95). At the same time, miR-26a targets the KLF4, by
which it inhibits MTB survival, and miR-17/PKCd/STAT3
pathways also attenuate MTB by activating autophagy (96).

According to Wang et al., miR-155 targets Rheb (autophagy
blocker) and promotes autophagy (97). PCED1BAS1 is down-
regulated in TB patients, which directly binds with miR-155, and
subsequently inhibits the activity of miR-155 (98). miR-155
expression helps in the survival of MTB by regulating ATG3
protein in dendritic cells (99). Yang et al. found that the
expression of miR-155 was diminished in patients with spinal
tuberculosis–induced intervertebral disc destruction and affects
its target MMP-11 expression (100).
miRNAs AS BIOMARKERS

TB biomarker research is ongoing for decades as the disease still
causes higher mortality due to multiple factors, such as host
immune evasion by MTB, latency condition, drug resistance, and
lack of prognostic and protective biomarkers. Many researchers
have identified TB-specific–modulated cytokines and genes as
biomarkers. However, those are not prominently emerging out
since most of them are identified in smaller sample groups that
lack sensitivity, differentiation ability, and reproducibility. The
potent, robust, minimally invasive, rapid, universally acceptable
biomarker is yet to be identified. Immune regulatory miRNAs
emerge as a new class of disease-specific diagnostic markers (101,
102). The differential expression of miRNAs in disease
phenomenon manifests their biomarker potential. To date,
multiple studies are focused on miRNA sequencing from
different samples involving PBMCs, serum/plasma, sputum,
urine, and exosomes. The candidate biomarkers identified from
circulation and PBMCs for discriminating TB from healthy are
miR-144* (103), miR155* and miR155 (104); miR-93*, miR-
Frontiers in Immunology | www.frontiersin.org 5
3125, and miR-29a (105); miR-889, miR-576-3p, and miR-361-
5p (106); miR-3179, miR-19b*, and miR-147 (11); miR-146a
(107); and miR-625-3p (108). A review by Pederson et al. gives a
complete biomarker profile on circulating miRNAs (109).
However, our focus is on the monocyte/macrophage-based
markers since most miRNAs are involved in evading their
immune defense. This will help to understand the underlying
pathogenesis and for identifying TB-specific biomarkers. The
differential expression of miRNAs from MTB infection studies
on macrophages and the monocyte-derived macrophages are
depicted in Table 1 and Figure 2.

Although many studies are available on the macrophage
infection-derived miRNAs, the actual in vivo scenario of a
patient is minimal. The limitations of these biomarker
candidates are variable between the studies, and each was
performed on identifying the miRNA targets for understanding
the disease pathology. In the future, the biomarker efficiency of
these candidates should be largely examined as multi-centric
studies with diverse ethnicities.
miRNAs IN HOST-DIRECTED
THERAPY (HDT)

Host-directed therapy is one of the emerging strategies to
improve the host immunity and eliminate pathogens in which
vitamins, repurposed drugs, cytokines, miRNAs, and,
monoclonal antibodies are used as an adjunct with
chemotherapy. It helps to control challenges of TB treatments,
such as drug resistance, the toxicity of chemotherapy, and
immune reconstitute inflammatory syndrome, and so on (116).
Induction of autophagy is one of the host-mediated therapy for
tuberculosis (117) and is induced by mTOR kinase inhibitors
and certain immunomodulators, such as rapamycin and vitamin
D3, respectively (118, 119). The PubMed search on miRNAs in
HDT for tuberculosis yielded no results. However, many HDT
strategies using miRNAs have been proposed by Sabir et al. (96).
They suggested direct administration of miRNAs or the use of
siRNAs to modulate the host responses. The downregulated anti-
mycobacterial miRNAs can be induced by synthetic oligos, and
the overexpressed pro-mycobacterial miRNAs can be repressed
using anti-miRNA complementary to mature miRNA (120–
122). This approach will benefit the host in achieving the
proper signaling and their downstream pro-inflammatory
responses. Synthetic delivery of miRNAs to macrophages is
possible with nanoparticles or liposomes (123, 124). Novel
HDT approaches on miRNA-mediated induction of host
killing machinery (phagocytosis, apoptosis, and autophagy)
could be a beneficial therapy to evade the pathogen strategies
and for efficient pathogen clearance.
FUTURE PERSPECTIVES

The research of miRNA-mediated regulation of TB is enormous;
however, the pro diagnosis and effective therapy for TB are
June 2021 | Volume 12 | Article 667206
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lacking widely. As miRNAs are regulators and modulators of the
immune response, the avenue for potential biomarkers and
therapeutic possibilities are much promising. Some of the key
factors to be considered for future researchonmiRNAare as follows:
Frontiers in Immunology | www.frontiersin.org 6
1. Various circulating miRNAs are available from many studies
as biomarkers but research on identifying cell-oriented
miRNAs, particularly monocytes and macrophages will
help better to understand the evasion of initial defense.
TABLE 1 | Monocyte/macrophage-based miRNAs as biomarker candidates for TB.

Cells Differentially Expressed miRNAs Analysis Platform Reference

Human
MDMs infected with MTB or BCG miR-155, miR-146a, miR-145, miR-222, miR-27a, and miR-27b Taqman low-density array (110)
MDMs from TB patients, LTB, and
Healthy individuals

TB vs HC: Taqman microarray
quantitative PCR

(71)
Upregulated (hsa-miR-16, hsa-miR-137, hsa-miR-140-3p, hsa- miR-193a-3p, hsa-
miR-501-5p, and hsa-miR-598)
Downregulated (hsa-miR-95)
LTB vs TB: Upregulated (hsa-miR-101 and hsa-miR-150)
Unique expression in LTB (miR-146b-3p and hsa-miR-296-5p)

MDM infected with TB LM miR-125-b qPCR (50)
MDM infected with M. smeg LM miR-155
MDM infected with MTB H37Rv Upregulated (miR-155, miR-21, miR-146a, miR-29a, miR-26a, let-7b, miR-34, miR-

132 & miR-138)
Nanostring nCounter
miRNA assay

(65)

Downregulated (miR-660, miR-144, miR-301b, miR-128, miR-423-3p, miR-410,
miR-27a, miR-93, miR-107, miR-345, miR-221, miR-25, miR-23b, miR-361-5p,
miR-130b & miR-340)

MDM infected with MTB Upregulated (miR-132, miR-146-5p, miR-30e, let-7i, miR-490-3p, miR-29c, miR-
26a, miR-21, let-7b & miR-29a)

Nanostring nCounter
miRNA assay

(57)

Downregulated (miR-25, miR-23b, miR-331-3p, miR-423-3p, miR-548f, miR-340,
miR-24, miR-107, miR-93, miR-324-5p, miR-188-5p, miR-130b, miR-410, miR-
361-5p, miR-197, mir-27a, miR-128, miR-345, miR-379, miR-133a & miR-221.

Primary monocytes and MDMs from
active TB patients and controls

Upregulated-miR-582-5p qPCR (75)

Primary macrophages from TB patients
vs controls

Upregulated miR-223 qPCR (62)

Macrophages from TB patients and
controls

Downregulated miR-365 qPCR (67)

MDM infected with MTB Upregulated miR-106b-5p qPCR (70)
Mouse
BMDMs infected with MTB 6 upregulated (miR-21, miR-21*, miR-146a, miR-146 b, miR210, and miR-155), 1

downregulated (miR-223)
Microarray and qPCR (111)

BMDMs infected with Mtb 4 upregulated (miR-24, miR-142, miR-155, and miR-212) and 3 downregulated
(miR-19a, miR-202, and miR-376a)

Gene expression
microarray

(112)

BMDMs infected with BCG miR-21 Taqman quantitative real-
time PCR

(63)

BMDMs infected with MTB Upregulated miR-27b qPCR (79)
BMDMs infected with MTB 3 upregulated (miR-155, miR-146a & miR-21) Taqman low-density

arrays
(1)

Mouse peritoneal macrophages &
BMDMs

Upregulated miR-146a qPCR (60)

Cell Line
U937 macrophages 149 DE (miR-424–5p, miR-493-5p, miR-27 b-3p, miR-296-5p, miR-377–5p, miR-

3680–5p)
Microarray (113)

THP-1 cells infected with Beijing/W or
non-Beijing/W strains

13 downregulated (let-7e, let-7f, miR-10a, miR-21, miR-26a, miR-99a, miR-140–3p,
miR-150, miR-181a, miR-320, miR-339–5p, miR-425, and miR-582-5p)

Taqman microarray
quantitative PCR

(71)

THP-1 cells infected with virulent or
avirulent Mtb strains

9 DE (miR-30a, miR-30e, miR-155, miR-1275, miR-3665, miR-3178, miR-4484,
miR-4668-5p, and miR- 4497)

Microarray (114)

THP-1 cells infected with MTB HN878 12 upregulated (miR-33b*, miR-146a, miR-155, miR-132, miR-146b-5p, miR-720,
miR-30e, miR-661, miR-140-3p, miR-3651, miR-328, and miR-378

(115)

THP-1 cells and U937 cells Upregulated miR-32-5p qPCR (66)
THP-1 cells Upregulated miR-30a qPCR (55)
RAW264.7 cells and infected with MTB 3 upregulated (miR-155, miR-146a, and miR-21) Taqman low-density

arrays
(1)

RAW264.7 cells infected with MTB Upregulated miR-27b qPCR (79)
RAW264.7 cells infected with MTB Downregulated let-7f SYBR Green-based

miRNA profiling array
(58)

RAW264.7 cells Downregulated miR-20b-5p Semi quantitative PCR (72)
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2. Research on identified miRNAs to investigate their diagnostic
efficacy and therapeutic value is highly needed. This will help
address whether this differential expression is really specific
for TB or overlaps with a disease of similar pathology.

3. The mycobacterial strain-specific miRNA expression is
another concern since there is diversity in TB strains, and
the distribution is different in different geographical
locations.

4. Deep single-cell sequencing approach may enable the
complete miRNA profile for better understanding their bio-
signatures.

5. Patient samples from all disease stages of TB at diagnosis and
during treatment may give the disease-based profile during
the entire course of infection for understanding their
pathophysiology.

6. Novel HDT approaches using nanoparticle and siRNAs for
direct modulation of these expression signatures to induce
the host-mediated defense responses against Mycobacterium
will open up a better therapy adjunct with minimal
chemotherapy.

7. More animal studies with miRNA/long non-coding RNA
intervention for TB therapeutics should be carried out and
explored.
Frontiers in Immunology | www.frontiersin.org 7
Future collaborative efforts involving multidisciplinary
approach in various ethnic population with multiple factors
(age, gender, mycobacterial strain, disease stage, other chronic
lung infections, and inflammatory disease criteria) on these short
miRNAs from body fluids and cells could predict the valuable
miRNA biosignature network for biomarker discovery and host-
directed therapy.
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2. Flannagan RS, Cosí o G, Grinstein S. Antimicrobial Mechanisms of
Phagocytes and Bacterial Evasion Strategies. Nat Rev Microbiol (2009)
7:355–66. doi: 10.1038/nrmicro2128

3. Meena LS, Rajni. Survival Mechanisms of Pathogenic Mycobacterium
Tuberculosis H37Rv. FEBS J (2010) 277:2416–27. doi: 10.1111/j.1742-
4658.2010.07666.x
FIGURE 2 | Unique and shared miRNA biomarker candidates for TB within monocytes and macrophages across human, murine, and cell line studies.
June 2021 | Volume 12 | Article 667206

https://doi.org/10.1111/j.1462-5822.2012.01827.x
https://doi.org/10.1038/nrmicro2128
https://doi.org/10.1111/j.1742-4658.2010.07666.x
https://doi.org/10.1111/j.1742-4658.2010.07666.x
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sampath et al. Monocyte and Macrophage MiRNA for Tuberculosis
4. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG. Mycobacterium
Tuberculosis Blocks Crosslinking of Annexin-1 and Apoptotic Envelope
Formation on Infected Macrophages to Maintain Virulence. Nat Immunol
(2008) 9:1189–97. doi: 10.1038/ni.1654PMID:18794848

5. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, et al.
Mycobacterium Tuberculosis Evades Macrophage Defenses by Inhibiting
Plasma Membrane Repair. Nat Immunol (2009) 10:899– 906. doi: 10.1038/
ni.1758

6. Global Tuberculosis Report. Geneva: World Health Organization (2020).
7. Shah N, Wright A, Bai GH. Worldwide Emergence of Extensively Drug-

Resistant Tuberculosis (XDR TB): Global Survey of Second-Line Drug
Resistance Among Mycobacterium Tuberculosis Isolates. Emerg Infect Dis
(2007) 13:380–7. doi: 10.3201/eid1303.061400

8. Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte
Subsets: Phenotypes and Function in Tuberculosis Infection. Front
Immunol (2018) 9:1726. doi: 10.3389/fimmu.2018.01726

9. Philips JA, Ernst JD. Tuberculosis Pathogenesis and Immunity. Annu Rev
Pathol (2012) 7:353–84. doi: 10.1146/annurev-pathol-011811-132458

10. Balboa L, Barrios-Payan J, González-Domıńguez E, Lastrucci C, Lugo-
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