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Abstract 

Unobserved heterogeneity is called frailty, measuring frailty and 
multiplying it with the baseline distribution is critical for clustered 
survival data analysis. Lindley distribution is the one among classical 
distribution, yet it has limited applications in lifetime data analysis. 
Therefore, the objective of the study is to fit the frailty models for 
Lindley distribution and to compare the results with other existing 
distributions such as Exponential, Weibull, Lognormal and Log-
logistic to test the effectiveness. Two real-life data sets and simulated 
data were used to fit the baseline distributions with frailty models. The 
study results revealed that Lindley with Gamma frailty model is a 
good choice for kidney infection data and Lindley with Inverse 
Gaussian frailty model is the best fit for CGD (Chronic 
Granulomatous Disease) and the simulated data set. Further, Lindley 
with frailty models points out the lowest Akaike’s Information Criteria 
(AIC) and Bayesian Information Criteria (BIC) values than other 
baseline distributions. So we suggest that Lindley baseline distribution 
with the frailty models is a potential alternative approach for clustered 
survival data analysis. 

1. Introduction 

Survival (or time to event, lifetime) analysis plays a vital role in the 
fields of medicine, biology, epidemiology, and life sciences [1]. Unobserved 
random effect shared by subjects is called frailty, and it has a significant 
effect on an individual’s survival and hazard function. Therefore, estimating 
and including spontaneous impact (heterogeneity) to the models is crucial in 
the clustered survival data analysis [2]. The frailty term was introduced by 
Vaupel et al. [3] and was used in univariate analysis. This technique was 
applied to multivariate survival analysis by Clayton [4]. The frailty effect is 
multiplied with the baseline hazard function and assumed that it follows 
parametric distributions such as Gamma (Ga), Lognormal (LG), Positive 
Stable (PS), Inverse Gaussian (IG) and Power variance function (PVF) 
family [5]. Mostly Exponential, Weibull, Lognormal distributions are most 
commonly used as baseline distributions [6]. To arrive at a robust estimation, 
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we must choose the best baseline and frailty distribution depending on the 
data structure [5]. Lindley distribution is one of the classical distributions 
introduced by Lindley in [7], which gets importance for the different shapes 
of the hazard function [8]. It is often used in the field of reliability and is 
rarely applied for survival analysis [9]. The aim of the article is to fit the 
frailty models with Lindley baseline distribution and further, we have 
compared other popular baseline distributions for the same frailty models for 
identifying the best fit model. This paper is organized as follows. Section 2 
deals with the basic properties of Lindley distribution, Section 3 discusses 
frailty models and Section 4 shows the applications of Lindley distribution 
with frailty models for real-life and simulation study data set. Finally, 
concluding remarks are given in Section 5. 

2. Lindley Distribution 

Let us consider that the non-negative continuous random variable T 
denotes the time to event of interest and follows Lindley distribution with 
scale parameter  of a particular population. The probability density function 
(p.d.f.) and cumulative density function (c.d.f.) are given by equations (1) 
and (2), respectively: 

(p.d.f.) 

0,0;1
12

tettf t  (1) 

(c.d.f.) 

.0,0;1
11 tettF t  (2) 

The survival rate tS  is known as the probability of failure at time 

;1 tFtST  therefore, survival rate function is given by equation (3) 

.1
1 tettS  (3) 
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The hazard rate function of T is denoted as th  and is given by 

equation (4) 

,ts
tfth  

,1
12

t
tth  (4) 

where 10
2

h  and th  is an increasing function of “t” and “λ” and 

.12 th  The hazard function can be represented in the term of 

the cumulative hazard function is given by equation (5) 

t
tStFdtthtH

0
,log1log  (5) 

where 

;log
dt

tSdth  ;tHethtf  

.1
1log ttH etetS  

Solving the equation (5), we get 

.1log1log tttH  

Simplifying further, 

.1
1log tttH  

3. Frailty Models 

In frailty models, random effects are assumed to represent different 
clusters, and clusters are considered to be independent [10] and assume 
proportional hazards structure conditional on the random effect, “Z” [11]. Let 
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random effect “Z” be a non-negative frailty variable that indicates the 
individual-level risk of the study population. The conditional hazard then 
represents the frailty model as 

.exp..\ 0
T
ijiiij xZthZth  

Here, nJj ....,,2,1  is a subject and GIi ...,,2,1  is a 

group, where th0  is the common baseline hazard function for all subjects. 

The iZ  is the risk factor that is common for all subjects in the cluster group 

“i” and also assumed to be independently and identically distributed (IID) 
random variables with a common density function .,zf  Here,  is the 

parameter of the frailty distribution. The factor T
ijxexp  gives the subject-

specific contribution to the hazard. ijx  is the covariates vector for the subject 

j in group i, and  is the regression coefficient vector. 

Table 1. Hazard, cumulative hazard, and survival functions for parametric 
baseline distributions 

Baseline distributions 
(Parameters) 

Hazard function  

th0  

Cumulative hazard function 

tH0  

Survival functions 

tS0  

Lindley 0  
1

12

t
t  1

1log
t

t  tet
1

1  

Exponential 0   t  texp  

Weibull 0,  1t  t  texp  

Lognormal 0,R  
tt

t

log1

log
tlog1log  tlog1  

Loglogistic 0,R  k

k

t
kt

exp1
exp 1

 ktexp1log  ktexp1
1  

3.1. Baseline distributions and estimation of frailty 

Four parametric frailty models, namely Gamma (Ga), Inverse Gaussian 
(IG), Lognormal (LN), and Positive stable (PS) were used to fit and 
compared with Lindley and other baseline distributions. Table 1 shows 
hazard, cumulative hazard, and survival functions for each baseline 
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distribution such as Lindley, Exponential, Weibull, Lognormal and Log-
logistic. The frailty distributions mentioned above and their properties are 
well documented in previous studies [11-14]. Hence, the p.d.f. Laplace 
transformation (LS) and estimation of frailty for each distribution are 
summarized in Table 2. 

3.2. Marginal log-likelihood 

The marginal likelihood function is driven based on the assumption of 
conditional independence of lifespans given the frailty [11]. For parametric 
frailty models, the frailties appearing in the conditional likelihood can be 
integrated out to maximize the marginal likelihood, leading to estimates of 
the model parameters [14, 15]. In right-censored cluster survival data, the 
marginal log-likelihood of the observed data is under assumptions of (i) non-
informative right-censoring (ii) independence between the censoring time 
and the survival time random variables (iii) given the covariate information 
(iv) the marginal log-likelihood of the observed data iij JjIiUU ,;  

[16]. 

For right-censored clustered survival data, the observation for subject 

ii nJj ...,,2,1  from cluster GIi ...,,2,1  is the couple ijU  

,, ijijy  where ijijij cty ,min  is the minimum between the survival 

time ijt  and the censoring time ,ijc  and where ijijij ctI  is the event 

indicator. Covariate information may also be collected; in this case, 
,,, ijijijij xyU  where ijx  denotes the vector of covariates for the ijth 

observation. Further, if left-truncation is also present, truncation times ijT  are 

gathered in the vector: 

umargL ;,,  
G
i

ni
j

T
ijijij xyh

1 1 0log  

ni
j

T
ijij

dd xyHL ii
1 0 exp1log  

,explog
1 0

ni
j

T
ijij xyHL  
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where  

ni
j ijid

1
 

the number of events in the ith cluster. 

3.3. Laplace transform 

The Laplace transform to characterize the density functions of the frailty 
distribution, and unconditional survival and hazard functions can be easily 
expressed. Hence, the likelihood function can also be represented through the 
Laplace transform. Therefore, frailty distributions with easy Laplace 
transforms are essential; they allow for traditional maximum likelihood 

methods in parameter estimation [11, 17]. ,qL  the qth derivative of the 

Laplace transform [13, 14] of the frailty distribution defined as 

0
.expexp iii dzzfszZsEsL  

Higher-order derivatives qL  of the Laplace transform up to 

....,,1max dGdq  Hence, qth derivate is given by equation (6) 

.exp1 zsZEsL qqq  (6) 

3.4. Prediction 

The EM algorithm is a combination of an expectation, and a 
maximization step, and this method was used to predict the frailties [18]. The 
frailty iz  is predicted by ,,,;, iii uZEz  where iu  and i  are the 

data and the truncation times of the ith cluster. Therefore, conditional 
expectation becomes 

.
exp

exp
,,;,

1 0

1 0
1

ni
j

T
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d
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j

T
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Table 2. Probability density function (p.d.f), Laplace transform sL  and 

estimation of frailty for parametric frailty distributions 

Frailty 
distribution 

Probability density function 
(p.d.f) 

Laplace transform for frailty
ZsEsL exp  

Estimation of frailty 

ZsZE q explog  

sL qq .1log  

Gamma frailty 
(G) 

Ga  
,1

exp
11

1 zZ
zf

0  

01 1 ss  
sq 1log.1  

1

0
1log

q

l
l  

Positive Stable 
(PS) Ps  

One parameter; :,Gam  

mean ,1  variance  

zf  

1 !
111

k k
k

Z
 

,1sin1 kz k  

1,0  

Two parameters ,,  “ ” Not 

correspond to the variance 
Undefined mean and variance, so

“ ” used instead of “ ” 

0,exp 1 ss  

sq log.1log  

1

0
1

,log
q

m
m

mq s  

1s  

Smq,  are polynomials of degree 

m 

Inverse Gaussian 
(IG) IG  

23
2
1 Zzf  

0,2
1exp

2

z
z  

One parameter; :,Gam  

mean ,1  variance  

,2111exp s  

0s  

ZKsq
q 2

1log12log
2

 

zz2log2
1  

s2111  

where 
2
12 1 sz  

Lognormal (LN) 
LN  

2
1

z
zf  

0,2
logexp

2z  

One parameter; :,LN mean 

,0  variance  

For a lognormal frailty 
distribution no explicit 

evaluation of the Laplace 
transform is possible and also 

Kendall’s τ no explicit formula 
exists (Duchateau and Janssen 
[12]). Hence we need Laplace 

approximation sL q  

(Marco et al. [14]) 

,;exp11 swgq

212 ,; swg  

,;exp11log swgq ˇ  

212 ,; swg ˇ  

where mean w̌  and variance 

,;1 2 swg ˇ  

 

:qL  The qth derivative of the Laplace transform of the frailty distribution 
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4. Application to Real-life Data 

Application I 

For comparison of models, first, we used the kidney infection data set 
[19] to fit the four frailty models for five baseline distributions. The dataset 
contains the data of the first and second recurrence times (in days) of 
infection from the time of insertion of the catheter until it has to be removed. 
The measurements were recorded for 38 patients using portable dialysis 
equipment, totaling 76 observations (clusters). The dataset included five 
variables namely; Recurrence times, Indicator (0  censored (catheter may 

have to be removed for reasons other than kidney infection), 1  recurrence) 
with covariates of age, sex and diseases type. 

Application II 

Second, we used a “CGD” data set (i.e., Placebo-controlled randomized 
trial data of gamma interferon ( -IFN) in chronic Granulomatous disease) to 
compare the models [20]. The study investigates the effectiveness of the              
-IFN in reducing the rate of serious infections in CGD patients. The data set 

contains survival times between recurrent CGD infections (gap times) of 135 
patients (203 clusters) with the status censored (0) or not (1) and ten 
covariates of Treatment (0  Placebo, 1  -IFN), sex (0  Male, 1  Female), 

age (in years), height (in cm), weight (in kg), pattern of inheritance (0  

autosomal recessive, 1  X-linked), Corticosteroids used at the entry time (0 

 No, 1  Yes), prophylactic antibiotics used at the time of entry (0  No, 1  

Yes), hospital region (0  U.S., 1  Europe) and longitudinal years 
(accumulated time from the first infection in years). 

Simulation study 

A simulation study has been executed in a setting similar to a clustered 
survival data set structure including the covariate, survival time and 
censoring. A large dataset was simulated with a single covariate 1X  from a 
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Binomial distribution 5.0, pnB  with arbitrary parameter setting fixed 

throughout the entire study. The corresponding true regression coefficient is 
fixed as .11  Survival time was randomly generated between 3 to 120 

months considering several lifetime survival sets and we spawned a random 
censure following a uniform distribution on the interval from .9,0U  The 

frailty variables iZ  is assumed to follow any one of four frailty models 

(Gamma (Ga), Inverse Gaussian (IG), Lognormal (LN), and Positive stable 
(PS)). The simulated data contains the 1000 number of observations, i.e., 10 
clusters and 100 individuals in each cluster 1000n  and it was replicated 

1000 times. 

4.1. Data analysis 

R packages of “Survival” [21], “parfm” [14], “frailtyEM” [15] and 
“frailtypack” [22] were used to create the codes/function for Lindley and 
other distributions. R studio version 1.2.50 was used for data analysis. The 
method of Kendall’s tau was used to measure the association between any 
two event times from the same cluster [23]. Akaike’s Information Criteria 
((AIC  –2(loglikelihood) +2P); where P is the number of parameters) and 

Bayesian Information Criteria (BIC  –2(loglikelihood) + P(log/n)) were 
used to assess the model fitness. 

4.2. Results 

Comparison of four frailty models under five baseline distributions for 
kidney infection data is shown in Table 3. The results revealed that the 
Gamma frailty model is an excellent choice for this data because minimum 
AIC and BIC values were observed in all the baseline distributions. 
However, the lowest AIC and BIC values were recorded in the Lindley 
baseline with the Gamma frailty model (Figures 1-2). 
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Table 3. Comparison of frailty models under Lindley and other baseline 
distribution for kidney infection data 

Gamma (Ga) 
Inverse Gaussian 

(IG) 
Lognormal (LN) Positive Stable (PS) Baseline/Frailty 

distribution 
Parameters/ 
Covariates 

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Frailty 0.548 (0.208) 1.058 (0.571) 0.752 (0.705) 0.291 (0.07) 

Λ 0.076 (0.029) 0.075 (0.032) 0.064 (0.031) 0.053 (0.025) 

Sex -2.143 (0.408)^ -1.776 (0.396)^ -1.985 (0.697)* -1.465 (0.408)^ 

Age 0.003 (0.012) -0.001 (0.012) -0.001 (0.012) -0.007 (-0.007) 

AIC 672.155 674.862 674.194 682.366 

BIC 681.478 684.185 683.517 691.689 

Lindley 

Kendall’s Tau 0.215 0.229 0.220 0.293 

Frailty 0.301 (0.156) 0.375 (0.259) 0.342 (0.197) 0.112 (0.084) 

Λ 0.025 (0.014) 0.022 (0.013) 0.020 (0.011) 0.014 (0.008) 

Sex -1.485 (0.396)^ -1.31 (0.373)^ -1.356 (0.382)^ -0.951 (0.348)* 

Age 0.005 (0.011) 0.004 (0.011) 0.005 (0.011) 0.004 (0.011) 

AIC 674.496 675.699 682.264 675.212 

BIC 683.819 685.022 691.587 684.535 

Exponential 

Kendall’s Tau 0.131 0.125 0.139 0.112 

Frailty 0.510 (0.255) 0.677 (0.537) 0.589 (0.340) 0.139 0.134 

Ρ 1.216 (0.152) 1.145 (0.141) 1.177 (0.141) 1.039 0.154 

Λ 0.013 (0.009) 0.013 (0.010) 0.010 (0.007) 0.011 0.009 

Sex -1.912 (0.539)^ -1.481 (0.431)^ -1.626 (0.488)^ -0.973 (0.378)* 

Age 0.007 (0.012) 0.006 (0.012) 0.006 (0.011) 0.005 (0.011) 

AIC 674.376 676.627 682.315 675.726 

BIC 686.029 688.281 693.969 687.379 

Weibull 

Kendall’s Tau 0.203 0.181 0.208 0.139 

Frailty 0.106 (0.167) 0.099 (0.192) 0.191 (0.271) 0.001 (0.156) 

Α -5.845 (0.766) -5.802 ( 0.752) -5.970 (0.795) -5.568 (1.004) 

Κ 1.489 (0.292) 1.476 (0.287) 1.469 (0.267) 1.428 (0.277) 

Sex -1.006 (0.390)* -0.967 (0.360) * -1.049 (0.388)* -0.843 (0.292)* 

Age 0.012 (0.012) 0.012 (0.011) 0.015 (0.013) 0.008 (0.011) 

AIC 685.184 685.304 685.699 684.818 

BIC 696.837 696.958 697.353 696.472 

Log logistic 

Kendall’s Tau 0.050 0.043 0.085 0.010 

Frailty 0.999 (1.682) 1.000 (1.889) 1.000 (1.897) 0.500 (0.073) 

Μ 2.124 (0.021) 2.125 (0.026) 2.152 (0.133) 2.121 (0.018) 

Σ 0.561 (0.026) 0.557 (0.026) 0.589 (0.025) 0.554 (0.024) 

Sex -1.742 (0.475)^ -1.742 (0.381)^ -1.742 (0.384)^ -1.742 (0.545)* 

Age -0.018 (0.009) -0.018 (0.012) -0.023 (0.008)* -0.022 (0.010)# 

AIC 678.849 679.196 680.467 678.882 

BIC 690.503 690.85 692.121 690.536 

Lognormal 

Kendall’s Tau 0.333 0.233 0.290 0.500 

Significant at #5% level (P < 0.05); * 1% level (P < 0.005); ^0.1% level (P < 0.001) 
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Further among other frailty models, Lindley baseline distribution showed 
better results than other baseline distributions (Table 3 and Figures 1-2). The 
frailty models of Gamma, Inverse Gaussian and Lognormal with Lindley 
baseline have given almost close estimation values for this data. We noticed 
that the baseline distribution of log-logistic with frailty models is the least 
preferable option for kidney infection data because of high AIC and BIC 
values for all frailty models (Figures 1-2). 

 

Figure 1. Comparison of AIC values for kidney infection data. 

 

Figure 2. Comparison of BIC values for kidney infection data. 

Lindley, Exponential and Weibull baseline distributions with the Inverse 
Gaussian (IG) have given almost close estimation with smaller AIC and BIC 
values for the CGD data set (Table 4). However, Lindley with the Inverse 
Gaussian frailty model is the best choice for this data because of the lowest 
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AIC and BIC values. Moreover, we noticed Lindley with the lognormal 
frailty model also gave close estimation values for this data. Further within 
each of the frailty models, Lindley baseline distribution shows better 
estimates than other baseline distributions (Table 4 and Figures 3-4). In this 
case, we noticed that the baseline distributions of Log logistic and 
Lognormal were not good choices due to high estimation values observed for 
all frailty models for CGD data (Figures 3-4). In a similar way, four frailty 
models were compared for simulated data. The Inverse Gaussian frailty 
model with Lindley baseline is best among all frailty models due to recording 
the lowest AIC and BIC values for simulated data, given by Table 5. 

 

Figure 3. Comparison of AIC values for CGD data. 

 

Figure 4. Comparison of BIC values for CGD data. 
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Table 4. Models wise AIC and BIC values comparison for CGD data 
Frailty models 

Baseline 
distribution 

Akaike’s and 
Bayesian 

Information 
Criteria 

Gamma 
(GA) 

Inverse Gaussian 
(IG) 

Positive Stable 
(PS) 

Lognormal 
(LN) 

AIC 1100.841 1091.376 1118.325 1093.991 
Lindley 

BIC 1140.600 1131.135 1158.084 1133.749 

AIC 1100.700 1092.913 1126.282 1102.076 
Exponential 

BIC 1141.448 1132.672 1166.04 1141.835 

AIC 1101.990 1092.639 1124.477 1103.340 
Weibull 

BIC 1145.061 1135.711 1167.548 1146.411 

AIC 1164.963 1157.465 1202.817 1220.386 
Loglogistic 

BIC 1208.035 1200.536 1245.889 1263.458 

AIC 1164.843 1175.433 1233.841 1212.143 
Lognormal 

BIC 1121.771 1132.362 1190.769 1169.071 

Table 5. Comparison of frailty models under Lindley distribution for 
simulated data 

Gamma (Ga) Inverse Gaussian 
(IG) 

Positive Stable 
(PS) 

Lognormal (LN) Parameter/ 
Covariate 

Estimate SE Estimate SE Estimate SE Estimate SE 

Frailty 0.149 0.084 0.166 0.1 0.118 0.056 0.152 0.09 

 0.024 0.004 0.021 0.004 0.028 0.004 0.023 0.003 

Treatment –0.417* 0.141 –0.412* 0.136 –0.424* 0.143 –0.414* 0.138 

AIC 1590  1580.11  1594.98  1587.24  

BIC 1611.32  1606.84  1617.71  1608.96  

Kendall’s Tau 0.072  0.066  0.118  0.067  

*Significant at 0.1% level (P < 0.001) 

5. Conclusion 

In practice, exponential and the Weibull baseline distributions are widely 
used with frailty models in survival analysis. Identifying and applying                    
both baseline and frailty distributions based on the data structure are essential 
to the model estimation. This paper attempted to fit the Lindley baseline 
distribution with four frailty models and identify the best model; 
simultaneously, we compared the results for most commonly used baseline 
distributions with the same frailty models for real-life data. We proved that 
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Lindley with frailty models has a good fit with the smallest AIC and BIC 
values than other baseline distributions for the real-life data applications. The 
study will help construct the new frailty models for Lindley and other 
baseline distributions and that may be used for the future applications of the 
Lindley distributions. 
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