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Abstract

Background: In the medical field, various deep learning (DL) algorithms have been effec-
tively used to extract valuable information from unstructured clinical text data, potentially
leading to more effective outcomes. This study utilized clinical text data to classify clinical
case reports into tuberculosis (TB) and non-tuberculosis (non-TB) groups using natural lan-
guage processing (NLP), a pre-processing technique, and DL models. Methods: This study
used 1743 open-source respiratory disease clinical text data, labeled via fuzzy matching
with ICD-10 codes to create a labeled dataset. Two tokenization methods preprocessed the
clinical text data, and three models were evaluated: the existing Text-CNN, the proposed
Text-CNN with t-test, and Bio_ClinicalBERT. Performance was assessed using multiple
metrics and validated on 228 baseline screening clinical case text data collected from ICMR–
NIRT to demonstrate effective TB classification. Results: The proposed model achieved
the best results in both the test and validation datasets. On the test dataset, it attained a
precision of 88.19%, a recall of 90.71%, an F1-score of 89.44%, and an AUC of 0.91. Simi-
larly, on the validation dataset, it achieved 100% precision, 98.85% recall, 99.42% F1-score,
and an AUC of 0.982, demonstrating its effectiveness in TB classification. Conclusions:
This study highlights the effectiveness of DL models in classifying TB cases from clinical
notes. The proposed model outperformed the other two models. The TF-IDF and t-test
showed statistically significant feature selection and enhanced model interpretability and
efficiency, demonstrating the potential of NLP and DL in automating TB diagnosis in
clinical decision settings.

Keywords: tuberculosis; electronic health record; deep learning; text convolutional neural
network; Bio_ClinicalBERT; natural language processing

1. Introduction
In 2023, 8.2 million people worldwide reported a new diagnosis of tuberculosis (TB),

surpassing the 7.1 million in 2019, 5.8 million in 2020, and 6.4 million in 2021, as well as the
7.5 million in 2022. India is the country with the highest global burden of TB, accounting
for 26% of all TB cases globally in 2023 [1]. Efficient monitoring networks are required
to quantify and monitor the burden of the illness and its causes to meet the objective of
the End TB strategy and enhance patient care. Many low- and middle-income nations
are still struggling to put a functional TB surveillance system in place [2]. TB programs
should encourage the use of digital health platforms for patient data collection to save time
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and effort when filling out paper forms and prevent typical errors like incomplete and
inaccurate data. Digital health initiatives can improve program administration, surveillance,
and monitoring, and subsequently improve patient care [3]. Artificial Intelligence (AI)
in healthcare is a rapidly developing field. The availability of a large amount of data in
healthcare due to the extensive usage of biological data sources alongside electronic health
record (EHR) systems opens up new avenues for clinical studies. Such resources consist
of data-rich resources that can be used to enhance physicians’ productivity, quality, and
efficiency, as well as to reduce errors in prescribing medicine, reduce healthcare costs, and
provide safer treatment [4,5]. According to the United States Department of Health and
Human Services, EHR systems enable the collection of patient-level real-world data for
clinical care decision-making [6]. Among many other types of clinical narratives, including
patient experiences, a significant portion of these data are contained in free text and may be
found in radiology reports, discharge summaries, and doctors’ notes. Documenting the
complaints and symptoms of the patient, physical examination, diagnostic tests, findings,
therapies, and treatment outcomes, this clinical text follows the patient through the process
of treatment. Clinical free text is a form of unstructured data, which are difficult to process
using automated processing, although there have been several attempts to encode text as
structured data [7].

Medical databases often contain structured, semi-structured, and unstructured data.
While structured and semi-structured data can be mapped to standardized representa-
tions with minimal information loss [8], a significant portion of EHRs remain in free text
form [9]. Although unstructured medical records are more challenging to handle, they
often contain rich patient information that is valuable for research and modeling [10].
However, as medical databases grow and the variations in clinical texts increase, extracting
meaningful insights from unstructured data becomes increasingly difficult [11]. Discus-
sions on the development of machine learning (ML) models to derive representations
from free text in EHRs for the automated International Categorization of Diseases (ICD)
coding have been ongoing for over 20 years [12]. The World Health Organization (WHO)
designed the ICD, a globally standardized illness categorization process. This applies
coding to describe illnesses and classifies them systematically based on the disease, etiology,
clinical symptoms, and anatomical location [13]. Recent studies using advanced neural
network-generated models based on natural language processing (NLP) techniques showed
significant improvements in terms of performance [14,15]. Several ML techniques were
extensively applied to identify health outcomes from EHRs. These include supervised
techniques such as support vector machines and random forest, as well as neural networks
and deep learning (DL) models, which can be used in both supervised and unsupervised
settings [16–18].

Clinical writing frequently uses function words (such as “and”, “the”, or “is”), special
characters, misspellings, and acronyms. Therefore, NLP approaches can be utilized to create
a more formalized structural representation of a text [19], which can allow for data science,
ML, statistics, and medical prediction models to access this information more easily. NLP
is one of the most popular big data analysis methods in the healthcare industry, according
to Yim W. et al. It is described as “any computer-based algorithm that handles, augments,
and transforms natural language so that it can be represented for computation” [20].
Patient identification [21,22], disease classification [23,24], disease history [25], ICD-10
categorization [26], hospital readmission prediction [27], chronic disease prediction [28],
text de-identification tools [29], and clinical decision support systems [5] are just a few of
the health applications that utilize NLP approaches.

As DL algorithms and NLP techniques evolve, researchers increasingly employ elec-
tronic medical record (EMR) data for disease diagnosis. For example, to assist in sepsis
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identification at an earlier stage, Kam et al. employed a deep neural network (DNN) model
to build a prediction network following EMR data extraction of several biological signal
variables from the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II)
database [30]. Using EHRs as well as knowledge-based convolutional neural networks
(CNNs), Wang et al. developed a prediction model to calculate the distant recurrence
rate for breast cancer patients [31]. DL methods, predominantly CNN-based models [32],
as well as several others, such as transformer models [33] and recurrent neural network
(RNN)-based models [34], were successful in text classification. To extract important in-
formation for the CNN method, convolutional networks may convolve text on the word
vector dimensions and perform pooling layer operations. With this method, significant
data can be used for classification tasks.

In this study, we demonstrate that the integration of DL techniques, particularly
Bio_ClinicalBERT and the Text CNN model, is effective in classifying clinical notes into
“TB” or “non-TB” categories. Initially, the data consisted of unlabeled text-based clinical
notes. To assign labels, we employed fuzzy matching with ICD-10 codes, which enabled
the categorization of each clinical note as either “TB” or “non-TB”. Following this, NLP
techniques were applied to preprocess the text data, preparing it in a suitable format for DL
model training. Preprocessing is a crucial step for the Text CNN model, as it facilitates the
model’s ability to learn meaningful patterns within the clinical text. Finally, we compared
the performance metrics of the three models to evaluate their effectiveness in classifying
the clinical notes.

The prime aim of employing statistical feature selection to carry out keyword selection
using a statistical t-test for the Text CNN model is to select the important keywords from the
clinical text data and reduce the false positives (FP) and false negatives (FN). The article’s
research focus is as follows: “This study addresses by evaluating the performance of the
models, and comparison of the models like: Existing Text CNN, proposed Text CNN with
t-test model, and Bio_ClinicalBERT models for TB classification from the clinical notes”.

2. Materials and Methods
2.1. Dataset Labeling and Preprocessing

The dataset was collected from an openly available source [35] and comprises multi-
modal data from over 75,000 clinical case reports. We mapped unstructured clinical notes
to ICD-10 codes using fuzzy matching with the FuzzyWuzzy Python library version 0.18.0,
which uses Levenshtein distance to compute string similarity. A similarity criterion of ≥85%
was used to ensure accurate and meaningful matches. Clinical notes were then categorized
into two categories based on the ICD-10 codes: “A15–A19”, classified as “Tuberculosis”, and
“J00–J99”, categorized as “Non-Tuberculosis”, such as asthma, pneumonia, viral infections,
fungal infections, and other lung-related diseases. After applying this labeling process, we
obtained 1743 clinical case text data. Figure 1 illustrates the process of converting unlabeled
clinical text data into a labeled format using fuzzy matching with ICD-10 codes. This
transformation effectively converted the dataset into a labeled format, enabling a structured
analysis and model development. In the Supplementary File, Tables S1 and S2 present the
distribution of clinical notes labeled as TB and non-TB using the fuzzy matching technique
with ICD-10 codes. The data were split into 80% training and 20% testing data.
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Figure 1. Workflow for labeling clinical notes using ICD–10 codes; fuzzy matching was used for
conversion from an unlabeled to a labeled format.

2.2. Challenges of Handling Clinical Notes

Clinical notes present several challenges, particularly when applying ML and DL
algorithms. Since these notes are unstructured, they must be converted into a structured
format. This transformation procedure requires the use of the NLP technique to quantify the
medical terms and terminologies, which are key characteristics of the clinical text dataset.
Preprocessing is the crucial initial step in cleaning and preparing clinical notes for any ML
and DL analysis. This is especially important when handling medical vocabulary, which
requires specialized techniques. To the best of our knowledge, no prior study has utilized
clinical notes on respiratory diseases, particularly for TB classification in low-resource
settings, using DL models, including transformer-based models such as Bio_ClinicalBERT.
In this study, we evaluated the models using a validation dataset consisting of 228 clinical
case report text data obtained from the Indian Council of Medical Research—National
Institute for Research in Tuberculosis (ICMR—NIRT), Chennai, Tamil Nadu, India.

In the pre-processing steps, we employed the NLP rule-based pre-processing of the
clinical notes for the two models, which are the existing Text CNN and proposed Text
CNN with t-test models, such as lowercase text to convert all the texts into lowercase to
ensure uniformity and reduce variability. Numerical values were replaced with their word
equivalents for consistency, and medical measurement units were converted into their
full word forms for standardization. Lemmatization was applied to reduce words to their
base or dictionary forms. Common, non-informative words (stop words) and possessive
markers like “s” were removed, and the text was tokenized into individual words or
tokens for further analysis. A detailed summary of the text pre-processing steps applied
before the model training is provided in the Supplementary File, Table S3. In contrast, the
Bio_ClinicalBERT model does not require manual pre-processing, as its transformer-based
architecture automatically handles text normalization using a self-attention mechanism to
process the text. The framework of this study is illustrated in Figure 2.

2.3. Model Architectures
2.3.1. Text CNN

Text-CNN is a modified CNN designed specifically for text data, making it well-
suited to tasks such as sentiment analysis and text classification. Due to their strong
performance, especially in processing lengthy texts, CNNs have gained attention for use
in NLP tasks [36–38]. In Text CNN, a pre-trained word vector serves as the input, from
which the model generates relevant word embeddings. Unlike CNN [39], the convolution
kernel’s width must match the word vector’s size when applying the convolution. This
ensures that the model effectively captures the contextual information in text sequences.
Text CNN plays a crucial role in extracting text features from EHRs by employing various
techniques to enhance feature extraction from medical texts, minimize the inclusion of
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patient privacy-related information, highlight key features relevant to downstream clinical
tasks, and ensure privacy protection while retaining critical textual insights.

Figure 2. Study framework to identify patients with TB or non-TB using the EHR dataset; the
models were validated using the institutional clinical notes. This framework consists of data labeling,
preprocessing and tokenization, and model training, testing, and validation. Finally, the models were
evaluated using various performance metrics.

2.3.2. Bio_ClinicalBERT

We utilized Bio_ClinicalBERT [40], a domain-adapted version of BioBERT v1.0, for
the clinical text classification task. BioBERT v1.0 extends the original BERT (Bidirectional
Encoder Representations from Transformers) via pre-training on 200 k PubMed abstracts
and 270 k PMC full-text articles, enabling it to understand biomedical language. The
Bio_ClinicalBERT model builds upon this foundation through an additional pretraining on
approximately 880 million words from the clinical notes in the Medical Information Mart
for Intensive Care III (MIMIC-III) database, significantly enhancing its contextual under-
standing of clinical language. This extensive domain adaptation makes Bio_ClinicalBERT
particularly effective in clinical NLP applications, including the analysis and classification
of clinical text data. In this study, we employed Bio_ClinicalBERT to examine its capability
in clinical tasks that involve identifying meaningful insights from clinical text data.

2.3.3. Proposed Text CNN with Feature Selection

To further refine the input features for the Text CNN model, we applied a combination
of Term Frequency–Inverse Document Frequency (TF-IDF)- and t-test-based feature selec-
tion. TF-IDF was used to quantify the importance of words within the clinical test corpus,
while the t-test was employed to identify statistically significant terms that contribute to
distinguishing between TB and non-TB clinical case reports. This approach helped to elimi-
nate irrelevant words, reduce noise, and enhance the performance of the model. Figure 3
illustrates the framework of the proposed model, enhanced via t-test feature selection.

2.3.4. TF-IDF

TF-IDF is an unsupervised word-weighting technique that is widely used for text-
mining and information retrieval. It evaluates the importance of a word in a document
relative to a collection of documents (the corpus). The term frequency (TF) component
measures how often a word appears in a specific document, while the inverse document
frequency (IDF) component downweights words that occur frequently across many doc-
uments. This combination ensures that words which are common within a particular
document but rare across multiple documents are assigned higher weights. TF-IDF is
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particularly useful in clinical text analysis for identifying discriminative and contextually
significant words [41,42].

Figure 3. Model architecture for the proposed Text CNN with feature selection.

2.3.5. T-Test

To refine the feature set, we applied a t-test to identify words with statistically sig-
nificant differences between the TB and non-TB categories [43]. Keywords with p < 0.05
were retained in the vocabulary, effectively filtering out irrelevant or redundant terms.
Each selected term was assigned a unique index. By combining TF-IDF with t-test-based
feature selection, this approach ensured that the CNN model focused on the most relevant
features, thereby reducing noise and dimensionality. This not only enhanced classification
accuracy but also improved model interpretability and generalization, making it a robust
tool for TB detection in clinical text analysis. After developing the analysis framework, we
validated the model using retrospective baseline screening clinical text data collected from
the ICMR—NIRT. The validation data comprised 228 clinical case notes, offering a reliable
assessment of the model’s performance in a real-world clinical setting.

2.4. Model Setup Details

We aim to compare the performance of several models of analysis through distinct
hyperparameters and training configurations. The Text CNN model is an existing model,
and Text CNN with t-test was a proposed model that was utilized in this study, with an
embedding dimension of 100, 100 filters, and filter sizes of (3, 4, 5). It was designed for
two classes, with a dropout rate of 0.5 and Rectified Linear Unit (ReLU) as the activation
function. The model was trained using the Adam optimizer with a batch size of 16, eight
epochs, and a learning rate of 0.001. The total number of parameters for this model was
1.12 million. Bio_ClinicalBERT model is a pre-trained model employed in our study, featur-
ing an embedding dimension of 768 and 12 encoder layers. It was configured for binary
classification with a dropout rate of 0.1. The activation functions used were Gaussian error
linear unit (GeLU) in the Transformer Layers and Softmax in the final layer. We employed
the associated WordPiece tokenizer with a maximum sequence length of 512 tokens to pre-
process the input data. All 12 transformer encoder layers and the classification head were
jointly fine-tuned. The classification head consisted of a fully connected dense layer with
SoftMax activation applied to the [CLS] token representation. Fine-tuning was performed
on 1743 clinical cases, each with an average input length of 553 tokens (truncated to 512).
The model was trained using the Adam optimizer over three epochs, with a batch size of
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eight, and a learning rate of 5 × 10−5. Despite the absence of GPU acceleration, training
was conducted on an Intel® CoreTM i7-7700 CPU @ 3.60 GHz with 16 GB RAM, using
PyTorch version 2.2.0 and the Hugging Face Transformers library. The total number of
model parameters was 108 million. The entire training process, including data loading and
evaluation, was completed in approximately 60 min, demonstrating the feasibility of CPU-
based fine-tuning for small to moderately sized clinical text datasets. The hyperparameters
for each model are displayed in Table 1.

Table 1. Hyperparameters and training parameters used for three different models.

Model Name Text CNN Text CNN
with T-Test Bio_ClinicalBERT

M
od

el
H

yp
er

pa
ra

m
et

er
s

Embedding
dimensions 100 100 768

Number of
Filters/Encoders 100 100 12 encoders

Filter size (3, 4, 5) (3, 4, 5) -

Number of classes 2 2 2

Dropout 0.5 0.5 0.1

Activation function ReLU ReLU
GeLU (in

Transformer layers),
Softmax (final layer)

Optimizer Adam Adam Adam

Tr
ai

ni
ng

Pa
ra

m
et

er

Batch size 16 16 8

Epoch size 8 8 3

Learning rate 0.001 0.001 5.00 × 10−5

Total Parameters 1.12 M 1.12 M 108 M

2.5. Model Evaluation

To assess model performance, we evaluated the models using the key metrics of
precision, recall, and F1-score to determine the best-performing model.

Precision: A widely used metric for evaluating a model’s ability to correctly identify
relevant cases. It is calculated as the ratio of true positives (TP) to the sum of TP and false
positives (FP). This metric represents the proportion of correctly predicted positive cases
out of all predicted positive cases, as shown in Equation (1):

Precision =
TP

TP + FP
(1)

Recall or Sensitivity: Measures the model’s ability to correctly identify the actual
positive cases. This is calculated as the ratio of TP to the sum of TP and false negatives
(FN). This metric represents the proportion of correctly predicted positive cases out of all
actual positive cases in the dataset, as shown in Equation (2):

Recall =
TP

TP + FN
(2)
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F1-Score: The F1-score provides a balanced measure of precision and recall by com-
puting their harmonic mean. It accounts for both FP and FN, making it particularly useful
when dealing with imbalanced datasets. The metric is computed using Equation (3):

F1-Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3)

True Positive (TP): The number of TB-related clinical case reports that are correctly
identified as TB cases by the model.

False Positive (FP): The number of non-TB-related clinical case reports that are incor-
rectly identified as TB cases by the model.

True Negative (TN): The number of non-TB-related clinical case reports that are
correctly identified as non-TB cases by the model.

False Negative (FN): The number of TB-related clinical case reports that are incorrectly
identified as non-TB cases by the model.

3. Results
A proper and precise diagnosis is essential for improving patient outcomes and pre-

venting the spread of TB, which remains a major worldwide health burden. Clinical,
radiographic, and microbiological examinations have been used to diagnose TB; however,
a greater amount of patient information is now stored in EHRs, often in the form of un-
structured clinical notes. In the present study, we utilized a dataset comprising 1743 clinical
notes, which was split into 80% (1394 clinical notes) for training while the remaining 20%
(349 clinical notes) were used for testing the models, as depicted in Figure 4. All the analyses
were carried out in Python version 3.11, using several essential libraries that support DL
and NLP. The Natural Language Toolkit (NLTK) facilitated the initial text-preprocessing
tasks. The Hugging Face Transformers libraries provide access to pre-trained language
models, such as Bio_ClinicalBERT, which are made especially for processing medical text
data, enabling the extraction of meaningful features for clinical notes. DL frameworks like
PyTorch and TensorFlow were used to train and fine-tune neural networks on unlabeled
data. Keras, with a high-level Application Programming Interface (API), supports flexible
and accessible model implementation. Scikit-learn played an essential part in statistical
feature selection (t-test), model assessment (using precision, recall, and F1-score), and
validation. The integration of DL with statistical feature selection techniques improved the
clinical text analysis, resulting in a more reliable and effective approach to TB prediction
from unstructured clinical case data.

The models evaluated were the existing Text CNN, the proposed Text CNN with
t-test, and Bio_ClinicalBERT models. The models trained with an average sentence length
of 553 words. We pre-processed the text data using NLTK, applying word tokenization,
stopword removal, stemming, and lemmatization for the Text CNN and the Text CNN
with t-test models. After preprocessing, the Text CNN model utilized 27,454 tokens; for
the Bio_ClinicalBERT model, approximately 30,522 tokens were used, with WordPiece
tokenization, a subword-based method designed to handle out-of-vocabulary terms.

The Text CNN with the t-test model enhanced the input by selecting 1741 statistically
significant tokens for training. To assess the statistical significance of these differences,
we conducted a t-test comparing the TF-IDF distributions for each keyword across the
TB and non-TB groups, identifying terms with significant differences (p < 0.05). This test
determines whether the observed differences were statistically meaningful or likely due
to random chance. The mean TF-IDF values of each clinical keyword associated with TB
and non-TB patients are shown in Figure 5. Blue bars represent the mean TF-IDF values for
TB-related keyword terms, while red bars represent those found in non-TB clinical notes.
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These differences highlight the distinct importance of certain terms in TB versus non-TB. For
instance, keywords such as “Tuberculosis”, “Active TB”, and “Mycobacterium tuberculosis”
have notably higher mean TF-IDF values, of 0.0346, 0.0236, and 0.0137, respectively, in
TB-related clinical notes. In contrast, terms like “Pneumonia”, “Fungal Infection”, and
“Asthma” show higher relevance in non-TB cases, with mean TF-IDF values of 0.0177, 0.012,
and 0.0121. By retaining only statistically and clinically relevant terms, this feature selection
step improves both the robustness and interpretability of the model, allowing it to leverage
validated linguistic markers in the classification of TB and non-TB clinical notes.

 

Figure 4. Distribution plot of the TB and non-TB clinical notes.

 

Figure 5. Distribution of mean TF-IDF values for each clinical word in the TB and non-TB categories.

The test dataset comprises 349 clinical cases, of which 144 were TB and 205 were
non-TB instances. Table 2 summarizes the model-specific performance measures: precision,
recall, F1-score, and Area under the Curve (AUC). The trained models of Text CNN,
Bio_ClinicalBERT, and Text CNN with t-test feature selection were assessed on a test
dataset. The Text CNN model achieved a precision of 72.22%, indicating a high rate of
false positives (FP) in which non-TB cases were misclassified as TB. However, its recall of
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88.89% suggests it successfully identifies most TB cases, although with some compromise
in specificity. An AUC of 0.86 reflects a reasonably strong overall classification performance.
The Bio_ClinicalBERT improved upon the Text CNN in terms of precision, achieving 83.33%,
thereby reducing the FP. However, its recall dropped to 80.54%, suggesting it misses more
actual TB cases. In contrast, the Text CNN with t-test feature selection outperforms the other
two models across all the evaluation metrics. It achieved the highest precision of 88.19%,
indicating the effective minimization of FP, and the highest recall of 90.71%, meaning
it correctly identifies the majority of TB cases. The F1-score of 89.44% reflects a strong
balance between precision and recall, while its AUC of 0.91 demonstrates the best overall
classification performance. These results suggest that feature selection techniques, such as
the t-test, can greatly enhance model performance by removing irrelevant attributes and
concentrating on the most informative attributes.

Table 2. Performance metrics of different models on the test set.

Model Name Precision Recall F1-Score AUC

Text CNN 72.22 88.89 79.69 0.86

Bio_ClinicalBERT 83.33 80.54 81.91 0.85

Proposed Text CNN with t-test 88.19 90.71 89.44 0.91

To evaluate a classification model’s performance, a confusion matrix for the test set
is presented in Table 3. The confusion matrix provides insights into the distribution of
correct and incorrect predictions, allowing for a deeper understanding of each model’s
classification behavior. Among the models, the proposed Text CNN model demonstrated
the best performance. It correctly identified 127 (TP) TB cases and made only 17 (FP)
errors, misclassifying non-TB cases as TB. Additionally, it recorded just 13 (FN), meaning
that it missed the fewest actual TB cases, thus making it the most reliable model. The
Bio_ClinicalBERT model showed improved precision over the existing Text CNN model
by reducing the (FP) to 24. However, it missed 29 actual TB cases (FN), which negatively
affected its recall. The Text CNN model achieved a low number of (FN) of 13, showing
strong sensitivity in identifying TB cases. However, it had the highest number of (FP) of 40,
meaning it frequently misclassified non-TB cases as TB, which reduces its overall precision.

Table 3. Confusion matrix for the test set.

Model Name True Positive False Positive False Negative True Negative

Text CNN 104 40 13 192
Bio_ClinicalBERT 120 24 29 176

Proposed Text CNN
with t-test 127 17 13 192

The validation dataset comprises 228 clinical notes, which were evaluated by each
model to predict the TB cases. The performance metrics of the three different models on
the validation set are summarized in Table 4. The evaluation of the validation dataset
showed that the Text CNN with the t-test model achieved the best performance, with 100%
precision, 98.85% recall, and 99.42% F1-score, and an AUC of 0.982. These results indicate
that it perfectly identified all non-TB cases while detecting nearly all TB cases, making it
the most reliable model. The Bio_ClinicalBERT model achieved 100% precision, correctly
identifying all TB cases. However, its recall was considerably lower, at 76.11%, indicating
that it failed to detect many actual non-TB cases. This imbalance led to an F1-score of
86%, suggesting that while the model effectively avoids false positives, it is not effective in
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detecting TB cases. It obtained an AUC of 0.877; although higher than that of the Text CNN,
it remained lower than the Text CNN with the t-test model, making it a weaker overall
choice. The Text CNN model demonstrated a high recall of 98.66%, successfully identifying
most TB cases. However, its precision was lower, at 85.47%, indicating a higher rate of FP,
meaning some non-TB cases were incorrectly classified as TB. With an AUC of 0.835, it was
the least effective of the three models in distinguishing between TB and non-TB cases.

Table 4. Performance metrics for the different models of a validation set.

Model Name Precision Recall F1-Score AUC

Text CNN 85.47 98.66 91.68 0.835

Bio_ClinicalBERT 100 76.11 86 0.877

Proposed Text CNN with t-test 100 98.85 99.42 0.982

Table 5 presents the confusion matrix results for the validation dataset, providing
a detailed insight into model performance during the validation phase. By comparing
these results with the test sets’ confusion matrix, it assists in the identification of any
overfitting or underfitting problems. The confusion matrix helps evaluate each model’s
ability to correctly classify TB and non-TB cases, offering a comprehensive view of their
predictive accuracy. The proposed Text CNN with t-test model demonstrated the strongest
performance, correctly identifying 172 (TP), with only two (FN) and zero (FP). This indicates
that it accurately detects nearly all TB cases while avoiding any misclassification of non-TB
cases, making it the most clinically effective model. The Bio_ClinicalBERT model also
achieved zero (FP). However, it recorded 54 actual non-TB cases (FN), meaning it failed to
detect a significant number of actual TB cases, which limits its reliability for TB detection.
The Text CNN model detects 147 TB cases correctly (TP) and misses only 2 (FN). However,
it achieved 25 (FP), misclassifying several non-TB cases as TB. This notable reduction in
misclassifications by the proposed model highlights the value of feature selection, which
significantly enhances classification accuracy by emphasizing the most informative features.

Table 5. Confusion matrix for the validation set.

Model Name True Positive False Positive False Negative True Negative

Text CNN 147 25 2 54
Bio_ClinicalBERT 172 0 54 2

Proposed Text CNN
with t-test 172 0 2 54

The test and validation dataset results show that the Text CNN with t-test model
outperformed the others; it achieved the highest precision, recall, and F1-score, while also
minimizing the FP and FN. It is the most clinically accurate model for the identification of
TB in unlabeled clinical notes. The Text CNN model recorded good recall while recording
more false positives, which could lead to overdiagnosis. Bio_ClinicalBERT model, while
having high precision, has low recall, in the sense that it misses many TB cases, making it
less suitable for this application. From the findings, the proposed model is suggested for
TB classification in clinical text analysis for small samples.

4. Discussion
Employing DL techniques, this study demonstrates how clinical text data can be

utilized for disease prediction. We propose a Text CNN model with t-test-based feature
selection for classifying TB from clinical text data. Yao (2019) et al. [44] introduced a new
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method for classifying clinical texts, with a particular focus on the Obesity Challenge. In
their study, they employed a CNN model integrated with rule-based feature engineering
and knowledge-guided DL to classify medical texts related to obesity and its comorbidities.
Incorporating findings from earlier studies on the CNN-based classification of medical texts
and biomedical text classification, Rios and Kavuluru (2015) [45] demonstrated that CNNs
outperform conventional models, like logistic regression and Support Vector Machines.
However, they noted that the absence of explicit feature selection could introduce noise
during feature extraction. Similarly, Liang et al. (2017) further highlighted that CNNs often
capture redundant and irrelevant features, recommending the use of statistical feature se-
lection methods to enhance efficiency [46]. Addressing this limitation, our model integrates
t-test based feature selection before CNN model training, ensuring that only statistically
significant and clinically meaningful features are used. This approach effectively reduces
noise, improves classification accuracy, and enhances the clinical relevance of TB detection.

The proposed model achieved a strong performance in predicting TB from clinical note
descriptions, with an AUC of 0.91, F1-score of 89.44%, recall of 90.71%, and precision of
88.19%. On the validation dataset, the model performed even better, achieving an AUC of
0.982, an F1-score of 99.42%, a recall of 98.55%, and a precision of 100%. These results were
obtained after applying the NLTK word tokenization method as part of the preprocessing
pipeline. Overall, the findings demonstrated the effectiveness of DL models in predicting
TB from clinical notes and highlighted the critical role of feature selection in enhancing the
predictive performance of DL models.

The study also has several important implications for healthcare. Firstly, the use
of DL models for disease prediction holds great promise for transforming healthcare by
enhancing remote diagnostic capabilities. Additionally, we demonstrated how a fuzzy
matching approach can be used to extract keywords from clinical notes that match ICD-10
codes, thereby automating the conversion of unlabeled clinical notes into labeled data for
disease prediction. To fully harness the potential of DL models for illness prediction, further
research is required, especially research exploring alternative models and methodologies.
By enabling earlier detection and expanding remote diagnostic capabilities, DL-based
healthcare solutions have the potential to improve patient outcomes and enable more
effective disease management.

5. Conclusions
This study evaluated three DL-based models for the classification of TB from the clini-

cal text notes: the existing Text CNN, the Text CNN with t-test, and the Bio_ClinicalBERT
models. Among these, the proposed model emerged as the most reliable, achieving an
optimal balance between recall and precision. It effectively minimized both FP and FN,
significantly enhancing classification precision. Moreover, the model’s generalizability
and robustness were validated using an institutional dataset, validating its effectiveness
in real-world clinical settings. The Text CNN model exhibited a higher number of Type I
errors, leading to an increase in FP, while the Bio_ClinicalBERT model showed a higher
number of Type II errors, resulting in TB cases being missed.

Therefore, the proposed model significantly improves the classification accuracy
while reducing both FP and FN, making it the most effective framework for accurate TB
classification from clinical text data. This advancement supports improved clinical decision-
making and contributes to public health initiatives. Although the Bio_ClinicalBERT model
demonstrated excellent precision, its poor recall resulted in undetected TB cases, a major
risk in disease diagnosis.

Limitations: A key limitation of this study is the computational demand required to
train DL models like Text CNN and Bio_ClinicalBERT. High-performance hardware such
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as GPUs or TPUs are essential, but not always accessible in every healthcare facility. Fur-
thermore, real-time clinical deployment may require additional fine-tuning and validation
by physicians to ensure optimal performance. The Text CNN and proposed Text CNN with
t-test performed well on a relatively small dataset due to the robust pre-processing of text,
which standardized medical terminology and reduced noise. Although Bio_ClinicalBERT is
powerful model, it may struggle with smaller datasets due to its complexity and reliance on
extensive pre-training. The limited data may restrict its ability to capture nuanced clinical
variations, contributing to lower recall in the TB classification. Additionally, while the
model was trained on a publicly available dataset and validated using a small institutional
dataset, its performance on data from other hospitals or regions has not yet been tested. Do-
main variations in phrasing, terminology, or abbreviations may require model adaptation
for broader applicability.

Future Work: We propose the use of large language models (LLMs) to enhance the
model’s capacity to interpret complex clinical text. Fine-tuning domain-specific LLMs
on large TB-related datasets may improve contextual understanding and classification
accuracy. Additionally, we aim to develop an ontology-based diagnostic system that inte-
grates labeled medical knowledge to support text classification. Incorporating structured
clinical data, such as test results, radiographic reports, and symptom descriptions, through
semantic reasoning and knowledge graphs could lead to a more precise and interpretable
TB diagnostic system. To ensure broader generalizability, we recommend cross-institutional
and real-world validation using clinical notes from different hospitals in geographic re-
gions. For practical testing, we plan to integrate the model into EHR systems, facilitating
its seamless deployment in clinical workflows and improving TB detection in real-world
healthcare settings.
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