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Abstract 

Dual RNA-Seq technology has significantly advanced the study of biological interactions between two organisms by 
allowing parallel transcriptomic analysis. Existing analysis methods employ various combinations of open-source 
bioinformatics tools to process dual RNA-Seq data. Upon reviewing these methods, we intend to explore crucial criteria for 
selecting standard tools and methods, especially focusing on critical steps such as trimming and mapping reads to the 
reference genome. In order to validate the different combinatorial approaches, we performed benchmarking using top-
ranking tools and a publicly available dual RNA-Seq Sequence Read Archive (SRA) dataset. An important observation 
while evaluating the mapping approach is that when the adapter trimmed reads are first mapped to the pathogen genome, 
more reads align to the pathogen genome than the unmapped reads derived from the traditional host-first mapping approach. 
This mapping method prevents the misalignment of pathogen reads to the host genome due to their shorter length. In this 
way, the pathogenic read information found at lesser proportions in a complex eukaryotic dataset is precisely obtained. This 
protocol presents a comprehensive comparison of these possible approaches, resulting in a robust unified standard 
methodology. 

Key features 
• Benchmarking of top-ranking software for quality control, adapter trimming, and read mapping.
• Emphasizes the importance of read mapping criteria for dual RNA-Seq datasets: (i) high count of uniquely host mapped

reads, (ii) low count of host multi-mapped reads, and (iii) high count of unmapped reads belonging to pathogens.
• Elaborates the best mapping approach to precisely extract the pathogen reads as these get captured comparatively less

in dual RNA-Seq datasets.

Keywords: Dual RNA-Seq, Host–pathogen interactions, Host-first mapping, Pathogen-first mapping, Misalignment of 
pathogen reads 
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Graphical overview 
 

 
 
 

Background 
 
Dual RNA sequencing is a powerful tool to precisely investigate the complete gene expression profile of two actively 
interacting organisms. When a pathogen infects a host, both develop adaptation mechanisms by revealing a series of changes 
at molecular levels. These biological changes are interrelated and can be effectively elucidated by analyzing the whole 
transcriptome data of the host–pathogen interaction. Until 2012, transcriptomics sequencing of infectious diseases was 
limited to separately capturing the cascade of biological events in either the host or the pathogen [1]. This allows us to study 
gene expression changes only from a linear perspective. Over the years, insightful research in transcriptomics analysis has 
encouraged researchers across the globe to devise the concept of extracting and sequencing whole RNA from the infection 
site. This idea will provide a broader scope for unraveling the role of smaller molecules and studying the biological changes 
in organisms at different stages of interaction. Compared to conventional RNA sequencing technology, dual RNA 
sequencing caters to a sufficient amount of host and pathogen RNA and other small RNA molecules (microRNA, long non-
coding RNA, and other non-coding RNA) when pathogen-infected samples are subjected to the well-established and 
published methods of RNA extraction and sequencing procedures [2–5]. 
Dual sequencing data generated as reads or fragments comprises information on both the host and the pathogen. The infected 
host cells may not always reflect pathogen-related data in enormous quantities. Therefore, a detail-oriented analysis is 
necessary to capture the minimally found essential information on host–pathogen interplay. Several bioinformatics analysis 
methods and tools are available to explore the complex datasets involving eukaryotic and prokaryotic reads [6–8]. Most of 
these methods suggest a sequential mapping approach to extract host and pathogen reads. Some studies recommend a 
combined mapping approach where the reference genomes of the host and pathogen are concatenated, indexed, and used as 
a single reference [9,10]. As far as quality control and adapter removal are concerned, standard methods for read mapping 
have been receiving greater attention as pathogen data is found in lesser quantities. Espindula et al. [10] conducted studies 
on different infection models and showed that other alternative mapping approaches outperform the traditional host-first 
mapping approach. When trimmed reads are mapped first to the host reference, there are high chances of pathogen read 
mismapping due to its shorter read length. To avoid this, alternative mapping approaches were introduced, and this bio-
protocol emphasizes one such mapping technique—the pathogen-first mapping approach—in detail. A comparison of 
mapping results proved that most of the pathogen reads have been restored in the pathogen-first mapping approach. The 
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results obtained using this approach are now based on a higher confidence scale and can be used for further processing. 
This protocol is presented with the aim of demonstrating a standardized bioinformatics procedure for productive mapping. 
In this protocol, human monocyte-derived macrophages (HMDMs) infected with Mycobacterium tuberculosis (Mtb) were 
used as a dual RNA-Seq model. Apart from humans infected with Mtb, other host and pathogen models can still be used in 
dual RNA-Seq experiments. For example, other dual RNA-Seq datasets are publicly available in Gene Expression Omnibus 
(GEO); one such dataset is Triticum aestivum infected with Fusarium graminearum (Accession: SRP439529; GEO: 
GSE233409). Dual RNA-Seq test dataset of human–Mtb was downloaded from Sequence Read Archive (SRA), National 
Centre for Biotechnology Information (Accession: SRP359986 [11]). This study primarily focuses on a compound that 
restricts Mycobacterium tuberculosis from catabolizing cholesterol by binding with iron. The data quality control before and 
after read trimming was performed using FastQC. The FastQC tool can be accessed online at 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. For trimming low-quality bases and adapter removal, 
benchmarking was performed using the topmost adapter trimming software, namely fastp [12] and Trim-Galore 
(https://github.com/FelixKrueger/TrimGalore). Following this, the topmost splice-aware alignment tools STAR [13] and 
HISAT2 [14] were also benchmarked to obtain optimal results. The most important part of the analysis is to apply the best 
mapping method that serves the experimental purpose of dual RNA-Seq analysis. After mapping the reads to their respective 
genomes, the reads mapping to genes were quantified using featureCounts [15]. Other downstream analysis methods, which 
include read count normalization, differential expression analysis, gene ontology, and pathway enrichment, are not 
demonstrated here, as the key aim of this protocol is to highlight the crucial preparatory steps like quality control, adapter 
removal, and read mapping in a descriptive manner. 
 
 

Software and datasets 
 
1. Data 
Dual RNA-Seq datasets are publicly available on NCBI Sequence Read Archive (SRA) and can be downloaded and analyzed 
for learning purposes. For this protocol, a dataset from SRA (accession: SRP359986, Gene Expression Omnibus datasets; 
GEO: GSE196816) was downloaded and utilized. 

 
2. Bioinformatics tools (all tools were installed using conda) 
• SRA-Toolkit (version 3.1.0) includes tools like prefetch and fasterq-dump for fetching SRA datasets and extracting 
individual fastq files. 
• FastQC (version 0.12.1). For assessing the quality of fastq reads before and after trimming. 
• MultiQC (version 1.19). For integrating results into interactive visualization reports throughout the analysis. 
• TrimGalore (version 0.6.10) and Cutadapt (version 4.6). For quality-trimming bases from reads, automatic adapter 
detection and removal, and filtering reads based on lengths. 
• HISAT2 (version 2.2.1). For indexing the reference genome and mapping trimmed high-quality reads to the reference 
genome of eukaryotes. 
• BWA (version 0.7.17-r1188). For indexing the reference genome and mapping trimmed high-quality reads to the reference 
genome of prokaryotes. 
• SAMtools (version 1.19). For converting huge files from mapping results (.sam) into binary formatted .bam files enabling 
easy processing, to sort reads with their mate pairs, and to check the statistical distribution of reads after mapping. 
• Bedtools (version v2.31.1). For extracting the interleaved reads inside .bam files into paired-end separate fastq files. 
• featureCounts from Subread package (version v2.0.6). For quantifying all reads mapped to genomic coordinates using 
annotation feature file(.gtf/.gff3) of the reference genome. 
 
3. Platform used: Linux, Ubuntu  
• CPU: Architecture, 64 bit; 24 cores, 96 threads 
• Memory: 512 GB RAM 
 
Note: The threads/cores mentioned in each step of the analysis need to be modified by users as per the computational 
resources available. 
 
  

https://trace.ncbi.nlm.nih.gov/Traces?study=SRP439529
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/FelixKrueger/TrimGalore
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Procedure 
 
Pseudocode for the steps used in the analysis: 
 
START OF ANALYSIS 
# Step 1: Downloading SRA Datasets and Preparation of raw fastq files 
DOWNLOAD the list of SRA accession ids  
CREATE a file with SRA accession list 
USE ‘prefetch’ command on the SRA list to download data files 
USE ‘fasterq-dump’ command to extract fastq files from the downloaded data files 
USE ‘gzip’ command to compress extracted fastq files in .fastq.gz format 
 
# Step 2: Initial Quality Control of raw fastq files 
USE ‘fastqc’ command to check quality of raw data 
USE ‘multiqc’ to create consolidated QC report of raw data 
 
# Step 3: Data cleaning and Final Quality Control of trimmed data: 
USE ‘trimgalore’ command to trim adapter reads and low-quality bases from raw reads 
USE ‘fastqc’ command to check quality of adapter-trimmed reads 
USE ‘multiqc’ command to create consolidated QC report of adapter-trimmed reads 
 
# Step 4: Mapping high-quality fastq reads to the reference genome: 
CREATE the hg38 reference genome index using ‘hisat2’ 
CREATE the Mtb reference genome index using ‘bwa’ 
USE ‘bwa’ to map the adapter-trimmed reads to Mtb genome index 
USE ‘samtools’ to extract the unmapped reads from the generated .bam files 
USE ‘bedtools bamtofastq’ to convert .bam files to .fastq files 
USE ‘hisat2’ to map the unmapped reads to hg38 genome index 
 
# Step 5: Quantification of reads mapped to genomic features: 
USE ‘featurecounts’ on the mapped .bam files to count reads belonging to 
transcripts/genes/exons/ 
 
# Step 6: Downstream transcriptome analysis: 
USE the readcounts table to perform gene expression analysis using statistical 
methods like DESeq2, edgeR or Cufflinks-Cuffdiff 
USE tools and databases like ‘BINGO’, ‘CytoHubba’, ‘DAVID’, to identify ontologies 
and pathways of differentially expressed genes 
USE homology search tools like ‘BLAST’ to annotate the differentially expressed 
genes 
 
END OF ANALYSIS 
 
A. Downloading SRA datasets and preparation of raw fastq files 

 
The sequence datasets used were obtained from NCBI SRA from a dual RNA sequencing study conducted by Theriault et 
al. [11], where they identified a compound that restricts Mtb from catabolizing cholesterol by binding with iron. In the study, 
HMDMs were infected with Mtb, and the infected cells were exposed to the following drug treatments: 5 μg/mL ethambutol, 
67.5 ng/mL isoniazid, 10 μM mCLB073, 10 μM sAEL057, and dimethyl sulfoxide (DMSO; untreated). For demonstrative 
purposes, we chose to work with DMSO (untreated) for the control group, and 10 μM mCLB073 and 10 μM sAEL057 for 
the treatment groups (Table 1). The dataset included both paired-end and single-end read samples; hence, the protocol 
demonstrates processing both types of libraries in each step. 
 
Table 1 lists the SRR IDs, library type, and treatment given for all samples. All nine sample runs were downloaded from 
SRA using the SRR run IDs. 
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Table 1. Sample information 
SRR run IDs Library Treatment (Mtb-infected human macrophages) 
SRR18042662 Paired DMSO; untreated control 
SRR18042663 Single DMSO; untreated control 
SRR18042664 Single DMSO; untreated control 
SRR18042665 Paired 10 μM mCLB073 
SRR18042666 Single 10 μM mCLB073 
SRR18042667 Single 10 μM mCLB073 
SRR18042668 Paired 10 μM sAEL057 
SRR18042669 Single 10 μM sAEL057 
SRR18042670 Single 10 μM sAEL057 

 
The sequence reads data were downloaded using the prefetch tool from SRA-Toolkit (version 3.1.0). SRA-Toolkit can be 
downloaded from https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software. The paired-end and single-end reads 
were extracted from the downloads using fasterq-dump from SRA-Toolkit. 
 
Code snippet for downloading RNA-Seq datasets from NCBI-SRA: 
$ prefetch SRR18042662 SRR18042663 SRR18042664 SRR18042665 SRR18042666 SRR18042667 
SRR18042668 SRR18042669 SRR18042670 
$ fasterq-dump --threads 50 SRR18042662 SRR18042663 SRR18042664 SRR18042665 
SRR18042666 SRR18042667 SRR18042668 SRR18042669 SRR18042670 
 
Subsequently, the paired and single-end fastq files extracted from SRA downloads were compressed to .fastq.gz format 
using gzip. The compressed fastq files are the raw reads that will be utilized for the downstream analysis. 

 
B. Initial quality control using FastQC 
 
The quality of reads and bases from the raw FASTQ files were assessed using FastQC. This tool checks the number of reads 
and their quality, the number of bases and their quality, the presence of adapters, and other statistics such as read length 
distribution and GC content. FastQC generates separate visualization reports for forward and reverse-read files in HTML 
format. The HTML files from all samples are then consolidated into a single interactive visualization report using MultiQC 
[16]. Figures 1 and 2 represent the basic statistics and adapter content before trimming of SRR18042662 sample dataset 
using FastQC. 
 

 
 
Figure 1. Initial QC: Basic statistics for sample SRR18042662 
 

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
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Figure 2. Initial QC: Adapter content before trimming for the sample SRR18042662 
 
Code snippet for performing initial quality check on raw Fastq read files: 
$ fastqc -t 10 *.fastq.gz 
$ multiqc . 

 
where t is the number of threads to be used to run FastQC. The “.” in the multiqc command represents the current directory. 
 
C. Data cleaning and final quality check 

 
The sequence reads in the raw .fastq.gz files generally exhibited good quality. However, some low-quality bases and adapters 
are present in the sample reads, which need to be trimmed from the 3' end. After quality control and adapter trimming, the 
length of the reads varied widely. This variation may cause some reads to lose their mate pairs. Therefore, in addition to 
trimming, it is also essential to filter reads based on length (default cutoffs: TrimGalore - 20; fastp - 15). 
Trimming tools such as fastp (version 0.23.4) and TrimGalore can automatically detect and trim adapters. We used both 
tools to determine the best results. After trimming, we checked the quality of reads using FastQC. Figures 3 and 4 represent 
the basic statistics and adapter content of SRR18042662 sample dataset after trimming. 
 

 
 
Figure 3. Final QC: Basic statistics for the sample SRR18042662 after adapter trimming 
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Figure 4. Final QC: Adapter content after trimming for sample SRR18042662 
 
Code snippet for trimming adapters using TrimGalore and Fastp: 
# A. TrimGalore 
# For paired-end reads 
$ trim_galore --quality 20 --stringency 7 --paired SRR18042662_1.fastq.gz 
SRR18042662_2.fastq.gz --output_dir 2.Trimmed_reads/ --cores 2 --retain_unpaired 
 
# For single-end reads 
$ trim_galore --quality 20 --stringency 7 SRR18042663.fastq.gz --output_dir 
2.Trimmed_reads/ --cores 2 
 
# B. Fastp 
# For paired-end reads 
$ fastp -i SRR18042662_1.fastq.gz -I SRR18042662_2.fastq.gz -o 
SRR18042662_1_clean.fastq.gz -O SRR18042662_2_clean.fastq.gz --
detect_adapter_for_pe --cut_tail --correction --overrepresentation_analysis --json 
SRR18042662.fastp.json --html SRR18042662.fastp.html --thread 16 
 
# For single-end reads 
$ fastp -i SRR18042663.fastq.gz -o SRR18042663_clean.fastq.gz --cut_tail --
overrepresentation_analysis --json SRR18042663.fastp.json --html 
SRR18042663.fastp.html --thread 16 
 
TrimGalore parameters: 
--quality 20: Trim bases from the ends of reads based on low Phred Score quality (< 20). 
--stringency 7: Trims adapter sequences from ends only if there is an overlap of 7 or more bases with the adapter sequence. 
--paired: parameter for specifying paired-end reads as input. 
--retain unpaired: Removal of low-quality bases and adapters will lead to some reads having very low read lengths. These 
reads fail to meet length cutoffs and are removed. Their mate pairs remain as single reads and are retained in separate files. 
 
Fastp parameters: 
--detect_adapter_for_pe: Automatic adapter detection for paired-end sequences. If disabled, adapter detection will be 
assumed for single-end sequences. 
--cut_tail: trims read at 3′ end based on low base quality scores by moving a sliding window from 5′ to 3′. 
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--correction: For paired-end data; read pairs are overlapped to find proper matches, and bases with low quality on one read 
are corrected to a high quality of their corresponding base on the other read. 
--overrepresentation analysis: gives information on where the detected overrepresented sequences are mostly distributed. 
When comparing the results obtained from TrimGalore and fastp, we observed that TrimGalore retained almost 99.5% of 
reads across all samples. Although the Q20 and Q30 Phred values improved with fastp, more reads and bases were removed 
after trimming (see Table 2 below). Therefore, we chose to proceed with TrimGalore as the preferred trimming tool. We 
then executed FastQC and MultiQC on the trimmed reads to ensure these were of high quality for downstream analysis. 
 
Table 2. Read-base distribution before and after trimming using Fastp and TrimGalore 

Sample Raw Reads Raw read 
bases (GB) 

Fastp-trimmed 
reads 

Fastp-trimmed 
bases (GB) 

TrimGalore-
trimmed reads 

TrimGalore-
trimmed 
bases (GB) 

SRR18042662 92,046,490 13.807 88,159,790 (95.78) 12.861 91,532,448 (99.44) 13.376 
SRR18042663 28,312,422 2.407 26,720,747 (94.38) 2.194 26,932,291 (95.13) 2.213 
SRR18042664 31,636,161 2.689 31,455,656 (99.43) 2.669 31,612,738 (99.93) 2.680 

SRR18042665 200,335,050 30.050 192,054,572 
(95.87) 27.590 199,221,410 

(99.44) 28.677 

SRR18042666 33,538,680 2.851 33,242,144 (99.12) 2.821 33,120,616 (98.75) 2.791 
SRR18042667 35,517,838 3.019 35,303,710 (99.40) 2.996 35,487,051 (99.91) 3.007 

SRR18042668 121,942,300 18.291 115,871,486 
(95.02) 16.789 120,703,024 

(98.98) 17.522 

SRR18042669 30,961,231 2.632 30,760,768 (99.35) 2.610 30,834,234 (99.59) 2.594 
SRR18042670 49,600,226 4.216 49,297,844 (99.39) 4.183 49,569,155 (99.94) 4.202 

Note: In the above table, the numbers represented in parenthesis indicate the percentage of reads retained after trimming 
with fastp and trimgalore. 
 
D. Mapping high-quality reads to reference genomes 

 
The next step is to map the trimmed reads to a reference genome (Human - hg38) to identify the genomic locations of all 
the reads. For genome mapping, there are two leading splice-aware alignment tools: STAR and HISAT2. STAR is a super-
fast, highly accurate, and memory-intensive splice-aware aligner. STAR reports a high proportion of uniquely mapped reads 
as compared to any other topmost splice-aware alignment tools. STAR also maps the non-contiguous reads to the reference 
genome by a technique called soft clipping. This method improves mapping accuracy, and almost every read is mapped to 
the genome. However, most of the reads tend to multimap at different genomic locations. There is a chance that the shorter 
pathogenic reads from the dual RNA-Seq dataset will be multi-mapped to the host genome, and these may also be reported 
as uniquely mapped reads by soft clipping. In order to avoid such mismapping of reads, we emphasize certain critical 
checkpoints that are discussed in detail in the following sections of the protocol. 

 
The following criteria are defined for mapping dual RNA-Seq data: 
• A high number of uniquely mapped reads. 
• A low number of multi-mapping reads. 
• A higher number of unmapped reads (likely belonging to a pathogen). 
 
Although both STAR and HISAT2 yield good results independently, we validated the above criteria by mapping our data 
with both tools. 
1. When comparing RefSeq and Ensembl annotations, we chose to work with RefSeq, as it covers most genes with its 
simplest version of genome annotation [17]. Therefore, as the next step, we downloaded the reference genome assembly 
(hg38) and annotation file (.gtf) from NCBI RefSeq - GCF_000001405.40. Go to the link to download the reference genome 
of Homo sapiens: https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/ 
2. In the above link, click the download button. Then, from the popup screen, select RefSeq only, and choose to download 
it. 
3. Uncompress the downloaded file and collect the reference genome (.fna) and annotation files (.gtf and .gff3). Store these 
files in a separate folder. 

 
Code snippet for indexing reference genome using STAR and HISAT2: 
# Indexing Reference Genome using STAR 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/
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$ STAR --runThreadN 4 --runMode genomeGenerate --genomeDir STAR_index --
genomeFastaFiles GCF_000001405.40_GRCh38.p14_genomic.fna --sjdbGTFfile genomic.gtf 
 
# Indexing Reference Genome using HISAT2 
# Extracting Splice Sites 
$ extract_splice_sites.py genomic.gtf > splice_sites.tsv 
# Extracting Exons 
$ extract_exons.py genomic.gtf > exons.tsv 
# Building Genome Index using exon and splice site information 
$ hisat2-build GCF_000001405.40_GRCh38.p14_genomic.fna 
hisat2_hg38_index/hg38_index -p 40 --ss splice_sites.tsv --exon exons.tsv 
 
STAR indexing parameters: 
--runThreadN 4: Number of cores to use for processing. It is best to use a minimum number of threads/cores, either 4 or 2, 
as STAR runs faster, exhausting more RAM. 
 
HISAT2 indexing parameters: 
--extract_splice_sites.py: To extract and incorporate splice site information from .gtf so that transcripts do not map mostly 
to intronic regions and also for identifying transcript isoforms. 
--extract_exons.py: To extract exon sites from .gtf, so that transcripts map exactly to exonic regions on the genome. 

 
Code snippet for reference genome mapping using STAR and HISAT2: 
# Mapping to the Reference Genome using STAR 
# Paired-end reads 
$ STAR --genomeDir STAR_index --runThreadN 2 --readFilesCommand zcat --readFilesIn 
SRR18042662_trimmed_1.fq.gz SRR18042662_trimmed_.fq.gz –outFileNamePrefix 
B.Mapping_STAR/SRR18042662__STAR --outSAMtype BAM Unsorted 
 
# Single-end reads 
$ STAR --genomeDir STAR_index --runThreadN 2 --readFilesCommand zcat --readFilesIn 
SRR18042663_trimmed.fq.gz --outFileNamePrefix B.Mapping_STAR/SRR18042663__STAR --
outSAMtype BAM Unsorted 
 
# Mapping to the Reference Genome using HISAT2 
# Paired-end reads 
$ hisat2 --dta -x hisat2_hg38_index/hg38_index -1 SRR18042662_trimmed_1.fq.gz -2 
SRR18042662_trimmed_2.fq.gz -p20 --un-conc-gz 
B.Mapping_HISAT2/SRR18042662_Unmapped_pairs --summary-file 
B.Mapping_HISAT2/SRR18042662_align_stats.txt | samtools view -@15 -b -S | samtools 
sort -n -@15 -o B.Mapping_HISAT2/SRR18042662.sorted.bam -O BAM 
 
# Single-end reads 
$ hisat2 --dta -x hisat2_hg38_index/hg38_index -U SRR18042663_trimmed.fq.gz -p20 -
-un-conc-gz B.Mapping_HISAT2/SRR18042663_Unmapped_reads.fq.gz --summary-file 
B.Mapping_HISAT2/SRR18042663_align_stats.txt | samtools view -@15 -b -S | samtools 
sort -n -@15 -o B.Mapping_HISAT2/SRR18042663.sorted.bam -O BAM 
 
The --dta parameter in HISAT2 reports the alignments as the transcript assemblers used to provide. After mapping all our 
samples with both STAR and HISAT2, the mapping results were tabulated in Table 3 for comparative analysis of the 
mapping performances. 
 
Table 3. Comparative mapping analysis of HISAT2 vs. STAR 

HISAT2 vs. STAR* Total reads Unique 
Multi-mapped 
(should be lesser) 

Unmapped (should be more 
for dual RNA-Seq data) 

SRR18042662 45766224 
31950488 (69.81%) 5220616 (11.41%) 8595120 (18.78%) 
34890020 (76.24%)* 6217589 (13.59%)* 4658615 (10.18%)* 
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SRR18042663 26932291 
15352634 (57.00%) 6347595 (23.57%) 5232062 (19.43%) 
15427880 (57.28%)* 6761705 (25.1%)* 4742706 (17.61%)* 

SRR18042664 31612738 
21878890 (69.21%) 5409698 (17.11%) 4324150 (13.68%) 
22095054 (69.89%)* 5731876 (18.13%)* 3785808 (11.98%)* 

SRR18042665 99610705 
39819023 (39.97%) 41065084 (41.23%) 18726598 (18.80%) 
38181484 (38.33%)* 52467481 (52.67%)* 8961740 (8.99%)* 

SRR18042666 33120616 
21182314 (63.96%) 7473519 (22.56%) 4464783 (13.48%) 
21391317 (64.59%)* 7870514 (23.76%)* 3858785 (11.65%)* 

SRR18042667 35487051 
24954036 (70.32%) 5706459 (16.08%) 4826556 (13.60%) 
25238589 (71.12%)* 6073050 (17.11%)* 4175412 (11.77%)* 

SRR18042668 60351512 
37169324 (61.59%) 11599955 (19.22%) 11582233 (19.19%) 
40350621 (66.86%)* 14124605 (23.4%)* 5876286 (9.74%)* 

SRR18042669 30834234 20287934 (65.80%) 6285903 (20.39%) 4260397 (13.82%) 
20528529 (66.58%)* 6817201 (22.11%)* 3488504 (11.31%)* 

SRR18042670 49569155 37725432 (76.11%) 8155703 (16.45%) 3688020 (7.44%) 
38124908 (76.91%)* 8671102 (17.5%)* 2773145 (5.6%)* 

Note: In the above table, * refers to the STAR tool, the corresponding number of reads, and percentage of reads mapped 
using STAR. 
 
From Table 3, it is evident that although STAR produced more uniquely mapped reads in most samples, it is noteworthy 
that HISAT2 generated fewer multi-mapped reads and more unmapped reads across all samples compared to STAR. 
Therefore, we can use HISAT2 for mapping reads to eukaryotic genomes. 
Assuming the unmapped reads belong to pathogens, we mapped these to the Mtb genome (RefSeq - GCF_000195955.2) 
using the BWA aligner [18] to obtain the mapping percentages shown below in Table 4 (second column). 
Another alternative mapping approach is to map the adapter-trimmed reads directly to the Mtb genome first. This approach 
is justified because prokaryotic reads are fewer and shorter compared to eukaryotic reads. When using the previously 
described mapping method, there is a risk of missing some of the prokaryotic reads, as these shorter reads may misalign 
with the eukaryotic genome. Therefore, mapping to the Mtb genome first will increase confidence in our mapping steps 
(Table 4). Subsequently, we extracted the unmapped reads and aligned them to the hg38 genome using HISAT2 (Table 5). 
This method was followed earlier by Espindula et al. [10], and significant changes were observed in the number of reads 
mapped using all possible approaches. This protocol extensively demonstrates the same pathogen-first mapping method by 
elaborating the steps in a more detailed manner with all the code snippets, which can be altered and used.  

 
Code snippet for alternative pathogen-first mapping approach: 
# Indexing Mtb genome using BWA short-read aligner 
$ bwa index GCF_000195955.2_ASM19595v2_genomic.fna 
 
# Alternative Mapping Approach 
# A. Mapping trimmed reads first to Mtb Genome using BWA. 
# Paired-end reads 
$ bwa mem Mtb_genome/GCF_000195955.2_ASM19595v2_genomic.fna 
SRR18042662_trimmed_1.fq.gz SRR18042662_trimmed_2.fq.gz -t 20 | samtools view -@15 
-b -S | samtools sort -n -@15 -o 
B.Mapping_BWA_PathogenFirst/SRR18042662.sorted.bam -O BAM 
 
# Single-end reads 
$ bwa mem Mtb_genome/GCF_000195955.2_ASM19595v2_genomic.fna 
SRR18042663_trimmed.fq.gz -t 20 | samtools view -@15 -b -S | samtools sort -n -@15 
-o B.Mapping_BWA_PathogenFirst/SRR18042663.sorted.bam -O BAM 
 
 
# B. Extract unmapped reads using samtools 
$ samtools view -b -f 4 B.Mapping_BWA_PathogenFirst/SRR18042662.sorted.bam > 
B.Mapping_BWA_PathogenFirst/SRR18042662_unmapped.sorted.bam 
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# C. Convert sorted bam files to fastq files (paired and single-end) 
$ bedtools bamtofastq -i SRR18042662_unmapped.sorted.bam -fq 
SRR18042662_unmapped_Host_1.fq -fq2 SRR18042662_unmapped_Host_2.fq 
$ samtools fastq SRR18042663_unmapped.sorted.bam > SRR18042662_unmapped_Host.fq 
 
# D. Map the unmapped (Host-reads) to hg38 using HISAT2 
# Refer HISAT2 mapping command (paired and single-end) from previous snippets. 
 
This way of mapping the reads will result in appropriately aligned prokaryotic reads so that we can more accurately use 
them to study gene expression levels of both the pathogen and the host. 
 
Table 4. Comparison of mapping between pathogen-first and unmapped Mtb reads (from HISAT2) 

Sample 
No. of unmapped reads (pathogen) from 
HISAT2 results mapped to Mtb genome 

No. of adapter-trimmed reads mapped to 
Mtb (pathogen-first method) 

SRR18042662 (PE) 4448104 (25.88%) 4715080 (5.15%) 
SRR18042663 3859948 (73.77%) 3859968 (14.33%) 
SRR18042664 2251961 (52.08%) 2252019 (7.12%) 
SRR18042665 (PE) 10709925 (28.60%) 12181384 (6.11%) 
SRR18042666 1831236 (41.02%) 1831276 (5.53%) 
SRR18042667 2433725 (50.42%) 2433770 (6.86%) 
SRR18042668 (PE) 6380085 (27.54%) 6883877 (5.70%) 
SRR18042669 1514060 (35.54%) 1514089 (4.91%) 
SRR18042670 1507197 (40.87%) 1507299 (3.04%) 

 
From Table 4, we can visualize the significant increase of ~0.1–0.5 million in mapping numbers in the case of paired-end 
reads, whereas for single-end reads, there is an increase of around 100 reads. Some of the reads may not map in pairs in the 
case of paired-end reads. Hence, the mapping percentages are lower in paired-end reads compared to single-end reads. The 
mapping percentages are even lower in the pathogen-first mapping approach since we are using the complete host–pathogen 
trimmed reads directly for mapping to the Mtb genome. 
 
Table 5. Comparison of mapping between host-first and unmapped host reads (from BWA) 

Sample 
No. of reads mapped to hg38 (host-first approach) No. of unmapped reads (host) mapped to hg38 

from BWA results (pathogen-first approach) 
Unique Multi-mapped Unmapped  Unique Multi-mapped Unmapped  

SRR18042662 31950488 
(69.81%) 

5220616 
(11.41%) 

8595120 
(18.78%) 

31893407 
(69.68%) 

5144240 
(11.24%) 

6320738 
(13.81%) 

SRR18042663 15352634 
(57.00%) 

6347595 
(23.57%) 

5232062 
(19.43%) 

15352703 
(57.00%) 

6347634 
(23.56%) 

1371986 
(5.09%) 

SRR18042664 
21878890 
(69.21%) 

5409698 
(17.11%) 

4324150 
(13.68%) 

21879065 
(69.20%) 

5409463 
(17.11%) 

2072191 
(6.55%) 

SRR18042665 39819023 
(39.97%) 

41065084 
(41.23%) 

18726598 
(18.80%) 

39652369 
(39.80%) 

40503121 
(40.66%) 

13305107 
(13.35%) 

SRR18042666 21182314 
(63.96%) 

7473519 
(22.56%) 

4464783 
(13.48%) 

21182318 
(63.95%) 

7473434 
(22.56%) 

2633588 
(7.95%) 

SRR18042667 24954036 
(70.32%) 

5706459 
(16.08%) 

4826556 
(13.60%) 

24954231 
(70.31%) 

5706225 
(16.07%) 

2392825 
(6.74%) 

SRR18042668 
37169324 
(61.59%) 

11599955 
(19.22%) 

11582233 
(19.19%) 

37076766 
(61.43%) 

11444024 
(18.96%) 

8361031 
(13.85%) 

SRR18042669 20287934 
(65.80%) 

6285903 
(20.39%) 

4260397 
(13.82%) 

20287963 
(65.79%) 

6285867 
(20.38%) 

2746315 
(8.90%) 

SRR18042670 37725432 
(76.11%) 

8155703 
(16.45%) 

3688020 
(7.44%) 

37725559 
(76.10%) 

8155417 
(16.45%) 

2180880 
(4.39%) 

 
In Table 5, we compare the mapping results of unmapped reads extracted from the BWA results with HISAT2 mapping 
results from Table 3. We observe that the unmapped reads from the pathogen-first approach have a good number of uniquely 
mapped reads and is marginally increased for single-end reads. The number of multi-mapped reads is also marginally lower 
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compared to the host-first mapping approach. Unmapped reads are minimal, as we initially mapped the reads to the Mtb 
genome. Though a significant increase/decrease in the number of host reads may not be observed during comparison, the 
host reads from the pathogen-first mapping approach are still found to have impactful results while performing downstream 
analysis. 
Therefore, we consider approach B (pathogen-first mapping) as the best approach and HISAT2 for mapping to the eukaryotic 
genome when working with Dual RNA-Seq data. 
 
Note: There may still be some reads left unmapped after mapping to genomes of both the host and the pathogen. There may 
even be a possibility of occurrence of horizontal gene transfer (HGT) events, wherein, other bacteria or viruses other than 
the pathogen of interest may have invaded the host cells. In order to check this, users may extract only the unmapped reads 
and map these reads against genomes of other species using BLAST search. 
 
E. Read count quantification using featureCounts 
 
In the previous section, we mapped all the reads to their respective genomes. The next step is to count the number of reads 
to determine which gene or exonic region each read has mapped to the genome. Therefore, we performed a quantification 
step for both the pathogen-mapped and host-mapped reads using the RefSeq annotation files (.gtf) of both Mtb and hg38. 
The featureCounts tool was used to count reads that are mapped to exonic regions and genes. 
 
Code snippet for quantification of read counts: 
# Read Count Quantification: FeatureCounts - Pathogen read counting 
# Paired-end reads 
$ featureCounts -a Mtb_Genome/genomic.gff -t 'gene' -g 'Name' 
SRR18042662.sorted.bam SRR18042665.sorted.bam SRR18042668.sorted.bam -p -o 
C.Read_Count_Quantification/Pathogen_Quant_PE_Togene_genename.tsv -O --
countReadPairs -T 40 
 
# Single-end reads 
$ featureCounts -a Mtb_Genome/genomic.gff -t 'gene' -g 'Name' 
SRR18042663.sorted.bam SRR18042664.sorted.bam SRR18042666.sorted.bam 
SRR18042667.sorted.bam SRR18042669.sorted.bam SRR18042670.sorted.bam -o 
C.Read_Count_Quantification/Pathogen_Quant_SE_Togene_genename.tsv -O -T 40 
 
# Merge .tsv files from both paired-end and single-end quantification results. 
$ cut -f1,7- Pathogen_Quant_PE_Togene_genename.tsv | grep -v "#" > 
temp_Pathogen_Quant_PE.tsv 
$ cut -f1,7- Pathogen_Quant_SE_Togene_genename.tsv | grep -v "#" > 
temp_Pathogen_Quant_SE.tsv 
$ join -o auto -e '0' -a 1 -a 2 -1 1 -2 1 temp_Pathogen_Quant_PE.tsv 
temp_Pathogen_Quant_SE.tsv > Pathogen_Quantification_matrix.tsv 
 
# Read Count Quantification: FeatureCounts - Host read counting 
# For paired-end and single-end reads (Host), follow the above code snippets by 
replacing "genomic.gff" file with RefSeq hg38 annotation file (.gff3) 

 
featureCounts parameters: 
-t ‘gene’: reads will be mapped to the “gene” feature from the annotation file. Default: ‘exon’. 
-g ‘Name’: the quantified reads will be grouped under gene names from .gff if “Name” is mentioned. Default: ‘gene_id’. 
-p: To specify that the reads are paired-end 
-O: A parameter for quantifying reads with minimum overlapping bases also. 
--countReadPairs: By mentioning this parameter, fragments will be quantified instead of reads. This is applicable for paired-
end reads. 
 
Join command parameters: 
-o auto: A parameter to apply a simple format to the output file. 
-e ‘0’: Parameter to fill empty values with zero. 
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-a: Parameter to fill the file numbers. 
-1 1: Join files based on column 1 for file 1. 
-2 1: Join files based on column 1 for file 2. 
 
The read count results obtained from the previous step can be used to infer the genes that are differentially expressed under 
different treatment conditions. 
 
 

Validation of protocol 
 
The number of reads retained after each step in the analysis significantly impacts data quality, especially when dealing with 
a dataset containing reads from multiple species. In this protocol, we have identified and listed the top-performing software 
predominantly used for such analyses. Additionally, we have tabulated the results obtained at each step after thoroughly 
benchmarking these software tools. Besides the software chosen for trimming and mapping in this protocol, the other 
sections were validated in earlier studies, which include mapping strategy [10] and choice of genome annotation [17]. 
 
 

General notes and troubleshooting 
 
General notes 
 
1. In this protocol, we have detailed the quality control, mapping, and quantification of read counts specific to both host and 
pathogen, as these are the most crucial steps in generating highly confident data for downstream analysis. The read count 
results from these steps are obtained after proper validation at each stage of analysis.  
2. We are not demonstrating further downstream analysis in detail here, as it would be a repetition of Bio-protocol references 
[19–22], and the statistical preferences vary widely based on individual research perspectives. 
3. The mapping strategies discussed are of vital importance. By using a pathogen-first approach, we ensure higher confidence 
in mapping steps, particularly by reducing misalignment issues with shorter prokaryotic reads. This strategy also helps in 
accurately identifying pathogen reads prior to mapping the remaining reads to the host genome using HISAT2. Such 
meticulous mapping strategies are critical for obtaining reliable data for efficient downstream analyses. 
4. The raw read counts obtained from quantification can be further normalized using the DESeq2 package in R, which 
applies the median of ratios method of normalization. This method accounts for sequencing depth and RNA composition 
without considering gene length, as differential expression (DE) analysis compares read counts between sample groups for 
the same gene. The calculation of median ratios and the script used to obtain normalized counts are also available online at 
https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html. 
5. DESeq2 works with sample replicates and tests how the variances calculated from read count data of replicates are 
dispersed. There are several methods for estimating the dispersion based on the nature of the dataset. Generally, in case of 
fewer replicates, the data may get adjusted to fit even the outliers into the dispersion model; this in turn affects the 
downstream analysis and biases the gene expression levels. Therefore, it is advisable to have more replicate samples so that 
the accuracy of data is maintained and the outliers are easily removed. DESeq2 uses negative binomial distribution by default, 
which is the most widely used dispersion method, as it is extensively designed for biological systems exhibiting excessive 
variability. Whenever there are unequal numbers of replicates, generalized linear models (GLMs) can be used, as they are 
flexible to model unequal variances. 
6. In the case of the dataset having non-replicate samples, edgeR can be used to perform differential expression analysis: 

 
Code snippet for DEG analysis using edgeR: 
# Install and load edgeR library and count databases 
install.packages(“edgeR”) 
library(edgeR) 
readcount <- read.table(“count_data.tsv”, header=TRUE, row.names=1) 
 
# Create DEG object 
dds <- DGEList(counts=readcount, group=c(“control”,”treatment”)) 
# The above line creates a DEG object using the readcounts of one control and one 
treatment sample. 

https://hbctraining.github.io/DGE_workshop/lessons/02_DGE_count_normalization.html
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# Data normalization 
dds <- calcNormFactors(dds, method=”TMM”) 
# Data normalization using Trimmed means of M-values method. 
 
# Estimation of Dispersion 
dds <- estimateDisp(dds, robust=TRUE) 

 
# Fitting negative binomial model 
fit <- glmFit(dds, design=model.matrix(~group)) 
 
# DEG analysis 
deg <- glmLRT(fit, coef=2) 
 
 
# Extracting significantly expressed genes based on p-value cutoffs 
deg_results <- deg[deg$table$PValue < 0.05, ] 

 
7. After normalization, differential gene (DE) expression analysis can be performed by comparing treatment and control 
groups from the sample dataset. The DE analysis results can be validated by appropriate statistical tests (Wald test, DESeq2), 
with significantly expressed genes marked by p-values, false discovery rate (FDR), and log-fold changes. The steps for 
performing DE analysis are described in the Bio-protocol by Hoerth et al. [23] and Fernández et al. [24]. 
8. After analyzing gene expression levels across several conditions, significantly upregulated and downregulated genes can 
be functionally annotated using homology search by BLAST.  
9. Gene ontology analysis can be performed using BiNGO, a Cytoscape-based plugin, discussed in detail by Duarte et al. 
[22]. The same method can be followed to predict the functional role of differentially expressed genes. As an alternative, 
CytoHubba, another cytoscape plugin, can also be used for this purpose. This tool ranks the topmost hub genes out of the 
significantly expressed genes. 
10. Pathway enrichment of differentially expressed genes can also be performed using online tools like DAVID, as 
mentioned by Chemello et al. [20]. Graphite Web [25] is another resource for pathway enrichment analysis. 
 
Troubleshooting 
 
1. The software and datasets section of the manuscript represents the corresponding latest version numbers, dated as of while 
performing this analysis. Therefore, it is always recommended that you install and use the latest version of the software with 
all the bug fixes. 
2. While installing software using conda, there are possibilities for already existing versions of the software to be 
upgraded/downgraded automatically in order to manage package dependencies. Some tools like trimgalore require FastQC 
and cutadapt to be installed separately, as version compatibility conflicts could arise. In such cases, users can still try to 
switch the order of software installation to have the latest version in usage. 
3. After trimming, it is essential to check whether low-quality bases and adapters are completely removed from the raw 
reads. The FastQC reports after trimming need to be checked for residual adapter content that may be present. In some cases, 
the poly-A tail and other bases can still be found. In this case, raw data can be again subjected to trimming using trimgalore 
by refining the parameters for adapter trimming. 
4. While extracting the unmapped reads from .bam files, it is important to ensure that the reads are properly fetched as 
paired-end, without missing out any reads because of the absence of mapping pairs. In order to address this, the .bam files 
used for extracting the reads need to be properly sorted by “name” by using “samtools sort -n“ and not by “coordinates”. 
 
GitHub page links for the above-mentioned software: 
1. TrimGalore: https://github.com/FelixKrueger/TrimGalore  
2. SAMtools: https://github.com/samtools/samtools?tab=readme-ov-file  
 
 
 
 
 

https://github.com/FelixKrueger/TrimGalore
https://github.com/samtools/samtools?tab=readme-ov-file
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