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Abstract

The management of tuberculosis (TB) poses a significant challenge, particularly in low- to middle-income regions, due to
its high mortality rate and severity. Given the paramount importance of maintaining the structural integrity of the bacterial
cell wall, alanine racemase emerges as a critical therapeutic target due to its key role in the peptidoglycan pathway and its
unique absence in humans. However, the imperative to discover novel inhibitors targeting this pathway is underscored by the
rise of drug-resistant TB strains. In this study, we employed a computational drug repurposing approach to predict potential
alanine racemase inhibitors by screening FDA-listed drugs cataloged in DrugBank 5.1.9. Additionally, docking studies used
cycloserine, a known alanine racemase inhibitor, as a reference compound. The prioritization of a potent inhibitor relied
on multiple criteria, including binding affinity, intermolecular interaction patterns, MMGBSA analysis, AG calculations,
ADMET properties, and molecular dynamics simulations to evaluate the protein-drug complex stability. Our comprehensive
analysis identified three compounds (DB00712, DB09064, and DB05015) as potential hits, successfully passing all prioritiza-
tion processes. However, DB09064 exhibited the most promising attributes among these candidates, demonstrating enhanced
complex stability, binding affinity (-8.5 kcal/mol), and significant intermolecular interactions. Furthermore, its interaction
pattern and Protein-Drug complex Root Mean Square Deviation (RMSD) trajectory closely resembled cycloserine, indi-
cating its potential in targeting alanine racemase. Therefore, DB09064 (Ciprofibrate) is predicted as a highly potential hit.
With further lead optimization and experimental validation to mitigate off-target effects, it could emerge as a novel alanine
racemase inhibitor, offering potential implications for combating drug-resistant TB.
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PLP Pyridoxal 5° phosphate
PMP Pyridoxamine 5-phosphate

GABA-AT y-Aminobutyric acid aminotransferase

DAAT D-aminoacid aminotransferase

CNS Central nervous system

DCS D-Cycloserine

PDB Protein data bank

MD Molecular dynamics

OPLS Optimized potential for liquid
simulations

2D Two-dimensional structure

3D Three-dimensional structure

UFF Universal force field

VS Virtual screening

PyRx Python prescription

PLIP Protein-Ligand interaction profiler

LBFGS Limited-memory
Broyden- Fletcher-Goldfarb-Shanno

NPT Constant number of particle (N), Con-
stant Pressure (P), Constant Temperature
(T)

RMSF Root mean square fluctuation

farPPI Fast amber rescoring for protein—protein
interaction

GAFF2 General amber force field 2

ff14SB Force field 14, side chain

MMPBSA Molecular mechanics poisson-boltzmann
surface

PB Poisson-Botzmann

GB Generalized born

SASA Solvent-accessible surface area

DCNN Deep convolutional neural network

SSE Secondary structural elements
PAINS Pan assay interference compounds

Introduction

Tuberculosis is caused by the bacterium Mycobacterium
tuberculosis, which is prevalent globally and has a high
mortality rate (Vasava et al. 2017). This infectious dis-
ease primarily affects the lungs, leading to pulmonary
tuberculosis, and can also aftect other parts of the body,
causing extra-pulmonary tuberculosis. Tuberculosis is
commonly linked to coinfection with HIV and diabetes,
with HIV significantly weakening the immune system
and increasing the risk of tuberculosis progression (Khan
et al. 2019). According to the WHO Global Tuberculo-
sis Report 2024, an estimated 10.84 million individuals
developed TB in 2023, yet only 8.16 million were offi-
cially diagnosed and reported, leaving approximately 2.7
million cases undetected. Although this represents an
improvement from 4.3 million undiagnosed cases in 2020,
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a substantial proportion of the treatment gap is concen-
trated in India (16%), Indonesia (11%), Pakistan (7.8%),
China (6.5%), and Myanmar (6.5%), collectively account-
ing for nearly half of the global burden of undiagnosed
TB. Current global TB treatment coverage stands at 75%,
which remains below the 90% target set for 2027 by WHO,
underscoring the urgent need for enhanced diagnostic
strategies, strengthened healthcare systems, and increased
investment in TB control programs. Addressing these gaps
is critical for achieving the End TB Strategy goals, thereby
necessitating innovative approaches such as drug repur-
posing and improved surveillance mechanisms to accel-
erate case detection and treatment interventions (WHO
2024). Tuberculosis is primarily transmitted through
airborne droplets containing Mycobacterium tuberculo-
sis, expelled when an infected person coughs or sneezes
(Khan et al. 2019). Given the severity and prevalence of
tuberculosis, the identification and development of effec-
tive antimicrobial drugs are crucial for managing the dis-
ease. Existing drug systems encompass multidrug-resistant
(MDR), extensively drug-resistant (XDR), total drug-
resistant (TDR-TB), and mono-resistant varieties, offering
varying degrees of treatment efficacy against the bacte-
rium (Lange et al. 2014; Vasava et al. 2017). Treatment of
tuberculosis typically involves the use of a combination
of first-line drugs: ethambutol, pyrazinamide, rifampicin,
isoniazid, rifabutin, and rifapentine, administered over 6-9
months (Singh et al. 2020; Vasava et al. 2017). In cases
where the first-line drugs are not effective, second-line
drugs such as fluoroquinolones (e.g., moxifloxacin and
levofloxacin) and injectables (e.g., kanamycin, amikacin,
and capreomycin) are used (Theron et al. 2014; Vasava
et al. 2017). The recent approval of bedaquiline and dela-
manid for use in MDR/XDR-TB has been a significant
breakthrough in tuberculosis drug discovery (Perveen
et al. 2022). Clinical trials are currently underway for
various tuberculosis drugs in different phases, including
TBI-16, GSK-3036656, OPC-167832, SQ109, TB-7371,
Q203, Deplazolid, Sutezolid, Contezoild, Macozine, and
pretomanid (Muniyandi and Ramachandran 2017; Bahu-
guna and Rawat 2020). With the continued development of
new drugs, there is hope that the fight against tuberculosis
can be won. Annually, 1.5 million people face multidrug-
resistant tuberculosis, necessitating the development of
potent and safe anti-tubercular chemotherapeutics. Drug
repurposing, leveraging established medications for new
diseases, is a cost-effective strategy that expedites drug
discovery, attracting industry and academia. Recent
advancements in computational drug repurposing have
significantly improved efficiency and accuracy by inte-
grating artificial intelligence (AI), deep learning, and
molecular modeling. Machine learning-driven predictive
models, combined with molecular docking and molecular



Biologia (2025) 80:1513-1530

1515

dynamics simulations, facilitate the identification of prom-
ising drug candidates with high target binding affinity.
Al-assisted virtual screening has further accelerated the
evaluation of FDA-approved drugs for various diseases,
reducing both the cost and time required for experimental
validation (Sahrawat 2024; Samdani and Vetrivel 2018).
Numerous drugs have been successfully repurposed to
date (Maitra et al. 2016), with example like thalidomide,
once used for morning sickness was later suggested for
leprosy treatment (Languillon 1971; Maitra et al. 2016).
Imatinib, an Abl family tyrosine kinase inhibitors used for
certain cancers, has shown promise in killing intracellu-
lar Mtb cells (Napier et al. 2011). Potential repurposable
drugs for anti-tubercular therapy include antibiotics (lin-
ezolid, clofazimine, amikacin, meropenem), non-steroidal
anti-inflammatory drugs (diminazene, ebselen), antivirals
(isoprinosine), anticancer drugs (bortezomib, elesclomol),
cardiovascular drugs (verapamil, simvastatin, pravastatin,
terlipressin, desmopressin) and others (metformin, bis-
biguanide dihydrochloride, rimonabant, linolenic acid,
pranlukast, auranofin, cyclosporin A) (An et al. 2020).

Targeting cell wall synthesis as a potential strategy

The mycobacterial cell envelope is a sophisticated struc-
ture comprising peptidoglycan (murein), an arabinogalactan
polysaccharide, and mycolic acid. Collectively, these ele-
ments contribute to the formation of the intricate mycolyl
arabinogalactan-peptidoglycan complex (Van Heijenoort
2001; Abrahams and Besra 2018; Jacobo-Delgado et al.
2023). This complex plays a crucial role in maintaining
cellular shape, facilitating the components within the cell,
and supporting the growth, persistence, virulence, innate
immune response, and overall activity of Mycobacterium
tuberculosis (M.tb) (Jankute et al. 2015; Alderwick et al.
2015; Belete 2022). Acting as an external barrier, it imparts
innate resistance to M.tb drugs, including ethionamide, iso-
niazid, ethambutol, and beta-lactam antibiotics targeting
the peptidoglycan pathway through beta-lactamase (BlaC)
(Jackson et al. 2013; Singh et al. 2017; Hugonnet and
Blanchard 2007). Peptidoglycan biosynthesis is a complex
process crucial for bacterial protection (Pazos and Peters
2019; Bugg and Walsh 1992) against osmotic lysis, relying
on the metabolism of D-Alanine (D-Ala) (Jiang et al. 2021).
This linear polymer, forming a net-like structure, is cross-
linked by short peptides, contributing to the shape and pro-
tection of the bacterial cell (Kuru et al. 2019). Disaccharide
polymers, referred to as "glycan strands," linked by (Bl —4)
glycosidic linkages, contain N-Acetylmuramic acid (Mur-
NAc) and N-acetylglucosamine (GIcNAc) residues, making
them a target for antibiotics due to their absence in human
cells (Bouhss et al. 2008; Miiller et al. 2017; Ogasawara and
Dairi 2021).

Initiated in the bacterial cytoplasm, peptidoglycan
(PG) biosynthesis involves enzymes GImS, GlmM, and
GImU synthesizing UDP-GIcNAc. Subsequent steps, cat-
alyzed by MurA and MurB, transform UDP-GIcNAc into
UDP-MurNAc. ATP-grasp enzymes (MurC, D, E, and F)
sequentially extend the peptide chain to synthesize UDP-
MurNAc-pentapeptide (Raymond et al. 2005; Shaku et al.
2020). D-glutamic acid is produced through two routes, and
the short peptide in the peptidoglycan monomer is finalized
with a D-Ala-D-Ala dipeptide. Essential enzymes, alanine
racemase (Alr) and D-alanine ligase (Ddl) play a vital role
in D-Ala metabolism (Yang et al. 2018), with their inacti-
vation serving as an effective strategy to prevent bacterial
peptidoglycan production and survival (Soda and Tanizawa
1990; Wei et al. 2016) (Fig. 1).

Alanine racemase, a fold type III dependent amino
acid racemase enzyme, plays a crucial role in converting
L-alanine to D-alanine, a key component in the forma-
tion of peptidoglycan within the bacterial cell wall (Strych
et al. 2001; Noda et al. 2004; Awasthy et al. 2012). Alr gets
inhibited by covalent inhibitors like alanine phosphonate
and D-cycloserine (Mehta et al. 2023), and this inhibition
was linked to the generation of a stable covalent bond with
PLP. All other PLP-containing enzymes have a mechanism
that comprises the catalytic steps of proton abstraction
and deprotonation (Rubinstein and Major 2010; Azam and
Jayaram 2015).

Earlier studies have reported several outline alanine
racemase inhibitors for mtb, wherein the docking results
highlighted the significant interactions with key amino acid
residues (Lys42, Tyr46, Argl40, His172, and Tyr175) that
span the binding site of this enzyme (Jayaram and Azam
2022). Numerous studies have evaluated the significance of
key binding site residues: Lys42, Tyr46, His172, Arg228,
Tyr271, and Met319 in the catalytic steps of enzymes. The
potential inhibitors of the alanine racemase are alaphosphin,
O-carbamyl-d-serine, chlorovinyl glycine, and d-cycloser-
ine (Azam and Jayaram 2015). For Alr enzymes to func-
tion, pyridoxal 5’-phosphate (PLP) is necessary. An internal
aldimine bond forms a covalent binding between the cofactor
and a lysine side chain on the active site. In the proposed
mechanism of inactivation by D-cycloserine (a known inhibi-
tor), it is reported to bind to the Ala site and target the PLP,
thereby moving the lysine side chain and creating an exter-
nal aldimine bond to PLP. In a series of steps, this external
aldimine (referred to as "the aldimine") is transformed into
a stable isoxazole derivative that resembles pyridoxamine
5-phosphate (PMP), which is considered to act as an irre-
versible inhibitor. General acids and bases catalyze this reac-
tion. Aldimine, intermediate ketimine, and final isoxazole
are structural isomers with the same empirical formula when
completely uncharged (C,;H;,N;0,P) (de Chiara et al. 2020).
Studies on the inactivation of two different PLP-enzymes,
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Fig.1 Synthesis of UDP-NAM pentapeptide in the peptidoglycan biosynthesis in bacterial cell wall

y-aminobutyric acid aminotransferase (GABA-AT) and
d-amino acid aminotransferase (DAAT), by cycloserine led
to the original inference of the currently hypothesized inac-
tivation process, known as the "aromatization" mechanism.
These studies suggested that the final isoxazole and the other
intermediates were connected reversibly for the analogous
inactivation of GABA-AT, as well as that the final isoxazole
formed during the inactivation of DAAT was irreversible
because of the anticipated thermodynamic stability of the
aromatic ring. (de Chiara et al. 2020; Peisach et al. 1998;
Olson et al. 1998).

As D-cycloserine induces CNS toxicity and also
lacks target specificity, its usage is restricted (Azam and
Jayaram 2015). It also has adverse effects such as head-
aches, fatigue, depressive symptoms, vertigo, disorienta-
tion, paresthesia, hyperirritability, mental illness, seizure
disorders, and jerks are some of the deleterious effects of
DCS therapy on the central nervous system. Cycloserine
is a cyclic analogue of D-alanine, and it inhibits enzymes
by forming covalent conformational changes with the PLP
cofactor (Fenn et al. 2003; Court et al. 2021). Other inhibi-
tors, such as alanine phosphonate and propionate, also target
PLP and undergo a loss of specificity. Enzyme inhibitors can
be designed using three different methods. Placing an inhibi-
tor within the active site is one approach. A second strategy
would be blocking entry to the active site by introducing an
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inhibitor. Designing an inhibitor that would stop dimeriza-
tion is a third approach. The first approach is the simplest.
However, Alr is known to possess a limited active site pocket
that makes it challenging to create effective drugs. Adopting
the second strategy entails creating compounds that block
the entrance. This would solve the issue of access to the
active site, but pharmacophore creation would be more chal-
lenging (LeMagueres et al. 2003). Designing an inhibitor
that restricts entry to the active site is the key objective of
this current study. In the current study, we used a virtual
screening method to probe the FDA-approved drugs to dis-
cover repurposable drugs that could target the alanine race-
mase enzyme in the peptidoglycan biosynthesis pathway, as
it is an essential enzyme in Mycobacterium tuberculosis,
which is not ubiquitous in humans and serves as a captivat-
ing target.

Materials and methods

Structural analysis of alanine racemase

Within PDB, there are two crystal structures available for
M.tb alanine racemase: one with co-crystallized ligand

(known inhibitor) (D-cycloserine) and PLP bound (as a
cofactor) (PDB ID: 6SCZ) and another with PLP in the
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native state (PDB ID: 1XFC). The co-crystallized structure
(6SCZ) was bound with the cycloserine and PLP, forming an
aldimine linkage with the Lys residue. Hence, this structure
was only used as a reference for defining the ligand binding
residues in the other crystal structure, namely, 1XFC, which
had PLP in native unperturbed form and was used for dock-
ing of cycloserine, as well as for virtual screening processes.
The rationale for choosing 1XFC was based on our earlier
attempt in the PLP-dependent enzyme, namely, ornithine
Decarboxylase, wherein the usage of the crystal structure
with unperturbed PLP yielded significant inferences (Muthu-
kumaran et al. 2021; Sivashanmugam et al. 2019) (Fig. 2).
The alanine racemase structure Mycobacterium tubercu-
losis (mtb (Alr)) used in this investigation (PDB ID: 1XFC)
exhibited a resolution of 1.9 A. Analysis of monomers
derived from diverse crystallographic structures revealed
a consistent composition of 384 residues per monomer
(LeMagueres et al. 2005). The homodimeric enzyme alanine
racemase is constituted by a monomer characterized by two
distinct domains, mimicking the structural features found in
bacillus and pseudomonas alanine racemases (Shaw et al.

1997; Au et al. 2008; Liu et al. 2012; Yan et al. 2007). The
N-terminal region features an eight-stranded o and p-barrel,
spanning residues 1-246, while the C-terminal region con-
sists of a  strand extending from residues 247-384 (Fig S1).
The two domains of alanine racemase are inclined at an angle
of 130" when viewed inside. Amid the two domains, distinct
hinge angles can be detected (LeMagueres et al. 2005). The
a and fB-barrel of one monomer appear against the other
monomer. The active site of the alanine racemase is divided
into three layers, namely, the inner, intermediate, and outer
layers centered around PLP (Fig. 3). Alr Mtb’s outer layer
comprises three residues: Asp357, Lys178, and Ala241.The
core layer comprises Tyr271, Tyr364, Tyr290, and Alal76,
whereas, the intermediate layer contains Arg316, 11e362,
Arg296, and Aspl77. This inner layer comprises two tyros-
ines, Tyr271 and Tyr364, which act as barriers for D-Ala and
inhibitors of the PLP binding cavity. It contains two catalytic
sites in the C-terminal domain and N-terminal domain. The
cofactor called pyridoxal 5’-phosphate is present around and
above the edge of the o/p, which is covalently linked through
an internal aldimine linkage with Lys 42, which is present at

TN PLP-Lys forms internal

) almidine linkages

Alpha Beta barrel

Intermediate

Inner layer

Try271, Try364,
Try290, Ala176

Arg316, 1le362,
Arg296, Asp177

Three layers of Active
site
(inner, intermediate, outer)

Beta barrel

1,

Hinge angle

Cofactor
PLP381

Outer

Asp357,
Lys178, Ala241

Fig.2 Illustrates the secondary structures (a helix-cyan; f sheet-
magenta; loops- wheat and hinge-orange), three layers of the active
site and cofactor in different colors, and also internal almidine link-

ages between PLP-Lys in alanine racemase (PDB ID: 1XFC) using
PyMOL (PyMOL Molecular Graphics System, Version 2.5.2 Schro-
dinger, LLC)
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Fig.3 Schematic representation of workflow in this study

the C-terminal of the B strand of the a and p-barrel (Fig. 2).
Corresponding to the PLP cofactor, the substrate binding
cavity of M.tb’s alanine racemase measures approximately
5.5 Ax5.0 Ax2.5 A. The second cavity is opposite to the
PLP. There is free space at Trp88, occupied by two water
molecules. Because Lys expands its cleft by the monomer’s
two domains, the PLP moiety is located in the barrel’s
approximate center, very close to the second domain.

AlrMtb maintains a robust interaction between the N1
atom of PLP and an adjacent arginine, Arg228. A hydrogen
bond network is formed among the residues Tyr271, His172,
Arg228, and His209. The Schiff base display protonated
characteristics due to the strong internal hydrogen bond
connection between the imine nitrogen of Lys42 and the
03’ of PLP. Additionally, the phosphate tail of PLP remains
stabilized by six hydrogen bonds (LeMagueres et al. 2005).
The O3’ atom of PLP forms a new hydrogen bond with the
NE1 atom of Trp88 in this structure (Fig. S2). The hydro-
gen bond interactions involve the single arginine and double
tyrosine residues. Several additional residues are involved
in directing the PLP structure in this protein. This enzyme’s
Arg219 forms a hydrogen bond with the pyridine nitrogen
and affects electron translocation in PLP alanine intermedi-
ates (LeMagueres et al. 2005).
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Protein preparation (structure retrieval, refinement,
and energy minimization)

The crystal structure of alanine racemase (PDB ID: 1XFC,
1.9 A), PLP in intact form, was subjected to geometry opti-
mization using the Protein preparation wizard of Schrodinger
suite. This module was used to fix bond formation, steric col-
lisions, disulfide bridges, missing loops, and missing residues
and to optimize the chi rotation of asparagine, glutamine, and
histidine residues. Additionally, histidine protonation states
were assigned using Schrodinger’s Maestro (Version 12.8)
PROPKA at neutral pH, and water molecules within 5 A of
the hetero group were removed using the Protein-preparation
module of schrodinger suite. Before being utilized for virtual
screening and MD simulations (Kufareva and Abagyan 2012),
the optimized protein structure was also energy-minimized
using the OPLS 2005 force field (John et al. 2017; Sadhasi-
vam and Vetrivel 2019).

Preparation and filtration of ligand datasets
The FDA(U.S. Food and Drug Administration)-approved ligand

datasets were retrieved from DrugBank 5.1.9, which incorpo-
rates the experimental drugs, withdrawn, and Nutraceutical
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(https://www.drugbank.ca/) (accessed on October 25, 2021)
and were proceeded for virtual screening. The dataset com-
prised 2658 ligands; among these molecules, the ones with
molecular weight > 500 kDa were selected, which resulted in
2093 ligands. Out of 2093, the molecules with undesirable atom
types like metal ions were expelled by PyRx (version 0.8) soft-
ware (https://pyrx.sourceforge.io/home) (Dallakyan and Olson
(2015) during the ligand filtering process, thereby resulting in
1800 ligands. Further, the 2D structural coordinates of these
1800 ligands in 2D.sdf format were converted to optimal 3D
conformations using open babel. The ligands were then sub-
jected to energy minimization using UFF (universal Force
Field) with a conjugate gradient method with 200 steps. Finally,
all these ligand coordinates were transformed to.pdbqt format
for further analysis using Open Babel built-in PyRx (version
0.8) software.

Docking of cycloserine with alanine racemase

The structural coordinates of cycloserine, a known inhibitor
of alanine racemase, was retrieved from the ligand depot
(http://ligand-depot.rcsb.org/), which was then docked using
Autodock Vina embedded in PyRx (version 0.8) to the cat-
alytic site of 1XFC structure. Further, the PLIP (Adasme
et al. 2021) server was used to analyze the inter-molecular
interactions. The docked complex was superimposed with
the co-crystallized structure of alanine racemase (6SCZ with
perturbed PLP) to validate the predictive accuracy of the
methods implemented. The docked complexes were then
assessed for binding free energy (MMGBSA), binding affin-
ity, and complex stability using molecular dynamics simula-
tions (Santos et al. 2019; Barth et al. 1995; Wu et al. 2022).

Virtual screening of alanine racemase
against ligands

Autodock Vina, embedded in PyRx (version 0.8) Software
wizard, was used to perform the virtual screening (Dal-
lakyan and Olson (2015) FDA-approved drugs against
IXFC (Alr). In this study, AutoDock Vina was used for vir-
tual screening, with the exhaustiveness parameter set to 8
to achieve a thorough exploration of ligand conformations.
This parameter determines the depth of sampling, where
higher values enhance the likelihood of identifying opti-
mal ligand-binding poses within the protein’s active site.
An exhaustiveness value of 8 strikes a balance between
computational cost and accuracy, ensuring reliable docking
outcomes. This approach is widely adopted in structure-
based virtual screening to improve the robustness of dock-
ing predictions (Samdani and Vetrivel 2018).The catalytic
residues chosen for the VS are Tyr271, Tyr364, Tyr290,
Alal76, and PLP390 (D-Cycloserine binding site). Grid
parameters set: center coordinates of X=49.83,Y =22.77,

7 =10.44 with Dimensions (Angstrom) of X=16.65 A,
Y =18.85 A, Z=18.85 A. Finally, the protein—ligand inter-
action patterns of the docked complexes were studied using
PLIP online server. (https://plip-tool.biotec.tu-dresden.de/
plip-web/plip/index).

Molecular dynamics (MD) simulation of the docked
complexes

MD simulation was executed for the docked complexes using
the Desmond package with OPLS2005, set as a force field. (Ber-
nardes et al. 2013) (Umashankar et al. 2021). For system build-
ing, a simple point charge (SPC/E) explicit water model was
used as the solvent, wherein the protein/protein—ligand com-
plexes were centered to a cubic box (10 A x10A x 10 A dimen-
sion), and appropriate counter-ions were added to neutralize
the system (Nagarajan et al. 2020). Further, the entire system(s)
were energy minimized using Steepest Descent and the lim-
ited-memory Broyden- Fletcher-Goldfarb-Shanno (LBFGS)
algorithms. Moreover, the Ewald particle mesh technique was
used during the 200 ns production run to preserve long-range
electrostatics (Bulatov et al. 2001; Petersen 1995; Harvey and
De Fabritiis 2009). Using an NPT ensemble with a temperature
scale of 300 k and pressure of 1.0 bar, the system(s) were equili-
brated. Using the Berendsen coupling algorithm (Ryckaert
and Ciccotti 1977), the temperature—pressure parameters were
coupled (Muralikumar et al. 2017; Umashankar et al. 2021;
Berendsen et al. 1984). The well-defined, equilibrated system,
including all atoms, were proceeded to a 200 ns production run,
with trajectory sampling of 100 ps intervals. The root mean
square deviation (RMSD) plots for C-alpha backbone atoms
to understand the inter-molecular interactions between pro-
teins and ligands. (Damm and Carlson 2006) were analyzed.
The residue-wise root mean square fluctuation (RMSF) plots
were analyzed to understand the significant conformational
changes in the residues. Additionally, the radius of gyration
was measured to assess the structural compactness (Fuglebakk
et al. 2012). The 2D interactions of protein—ligand complexes
were generated for the complete production run to infer the
complexes’ long-term durability and interaction sites. (Sad-
hasivam and Vetrivel 2019; Umashankar et al. 2021). A 200
ns MD simulation was chosen to ensure system equilibration
and capture key conformational dynamics of the protein-ligand
complexes. Studies indicate that simulations exceeding 100 ns
stabilize biomolecular interactions, reducing transient fluc-
tuations, especially in flexible enzymes like alanine racemase
(Muthukumaran et al. 2021). This duration allows observation
of ligand-induced conformational changes, interaction stabil-
ity, and binding free energy convergence, ensuring statistically
significant structural analyses (RMSD, RMSF, and hydrogen
bond occupancy) while maintaining computational efficiency
(Sathiyamani et al. 2023).
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MM-GBSA calculation of topmost stable complexes

The Molecular Mechanics-Generalized Born Surface Area
(MMGBSA) calculation is one of the most extensively used
methods for determining the binding free energy of pro-
tein—ligand complexes. MM-GBSA implicit solvent modelling
and molecular mechanics-based energy calculations are used in
this method to precisely calculate the protein—ligand complex
binding free energy by contrasting it with the free energies of
its unbound constituent parts. Using fast amber rescoring for
protein—protein interaction inhibitors (farPPI) on an online web
server, the MMGBSA (GB1) calculation was carried out on the
most stable complexes (Wang et al. 2019). When compared to
other approaches, farPPI’s GB1 option was shown to be highly
accurate. The server-provided force fields GAFF2 and ff14SB
were assigned to the ligand and protein, respectively. The lowest
potential energy conformation of the compounds with the best
stability was examined (Vivekanandan et al. 2022). Equation:
(1)-(4) shows the equations for estimating the MM/PBSA and
MM/GBSA binding free energies

AGhind = Gcomplex - (Grerepmr + Gligand)
=AH-TAS @)
~ AEMM + AGS()I\? -T A S

AEMM = AEborlded + AEele + AEvdW (2)
AGsolv = AGpolar + AGm)npolar (3)
AGnonpolar =V ASASA + ﬁ (4)

The total binding free energy is represented by the
AG,;,4- It is the difference in free energy between the bound
state (Gompiex) and Free states (Geeepior + Gligana)> and it
may alternatively be expressed as the sum of the enthalpy
(AH) and entropy parts (—TAS). Due to their high com-
putational cost and poor accuracy, the entropy changes
in this study were ignored while the enthalpy changes
were assessed using the MM/PBSA and MM/GBSA tech-
niques. The molecular mechanical energy (AE);,) and the
solvation-free energy (AG,,,) may be separated from the
enthalpy fraction. As we employed the single MD trajec-
tory procedure in our computations, the AEy;,, term con-
tains the intra-molecular (AE, ,.4), electrostatic (AE,),
and van der Waals (AE, ) energies, where the AE | 418
always equal to zero. For polar contributions, the Poisson-
Boltzmann (PB) or Generalised Born (GB) model was uti-
lized, whereas, the solvent-accessible surface area (SASA)
is thought to be the equivalent for non-polar contributions.
MMGBSA improves binding energy estimation by incor-
porating solvation effects, ligand flexibility, and entropy
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contributions, unlike traditional docking, which relies on
static scoring functions. It enhances predictive accuracy
by analyzing dynamic protein-ligand interactions from
MD simulations. Additionally, MMGBSA offers a compu-
tationally efficient alternative to more complex free energy
methods.

Calculation of KDeep for absolute binding affinity
(AG)

The top-ranking complexes, inferred based on the post-
molecular dynamics simulation, were also investigated for
absolute binding affinity (AG) using KDeep. This computa-
tional mode applies 3D convolutional neural networks using
a machine learning framework. After receiving the structural
input, the DCNN (Deep Convolutional Neural Network)
theory-based model—which has been pre-trained using the
complete datasets of PDB bind v. 2016 database—calculates
the absolute free energy of the protein—ligand complex by
evaluating the extent to which the input corresponds to the
model. (Jiménez et al. 2018) (https://www.playmolecule.
com/Kdeep/) (Vivekanandan et al. 2022). This analysis was
performed as an additional entity to validate the binding
affinity further.

ADME (absorption, distribution, metabolism,
and excretion) predictions

SWISSADME prediction

Poor pharmacokinetic and safety characteristics constitute a
significant barrier in drug development, resulting in a high
attrition rate. These uncertainties could be reduced with the aid
of computational chemistry methods. Thus, the SwissADME
web tool (http://www.swissadme.ch/) was also used to cal-
culate the physical and chemical characteristics, lipophilic-
ity, solubility in water, pharmacokinetics, drug-likeness, the
BOILED-Egg, iLOGP, and Bioavailability Radar for a better
understanding of the ADME properties of the prioritized small
molecules. This sort of analysis allows the creation of predic-
tive models of essential ADMET properties for drug develop-
ment (Daina et al. 2017; Bakchi B et al. 2022).

Results and discussion

Molecular dynamics simulation analysis

MD simulation analysis of the enzyme

The trajectory analysis of the protein RMSD plot revealed

that the C-alpha deviations were stable and were within the
range of 1.6 A—3 A with the average RMSD of 2.3 A until
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the end of the simulation (Fig. 4a). The RMSF plot also
inferred the peaks that represent the most fluctuating resi-
dues during the simulation: 75-100 (4.5 10\) and 600-700
3.2 A) (Fig. 4c). The dynamics of protein secondary struc-
tural elements (SSE) were tracked during the simulation.
The following percentages of secondary structure elements
conservations were obtained: 26.63% of Helix, 21.66% of
strand, and 48.30% of total secondary structure elements.
(Fig. 4b) shows the distribution of SSE by residue index
across the protein structure. The composition plot also pro-
vided an overview of the SSE composition for every trajec-
tory frame sampled. (Fig. 4d).

Post-docking analysis of protein and ligand complex
Alanine racemase and cycloserine (known inhibitor)

The docking of cycloserine, a known inhibitor to alanine
racemase (PDB ID:1XFC) showed a docking score of
—6.0 kcal/mol. The ligand showed 4 hydrophobic interac-
tions with residues: TYR271 (3.22 A), TYR290 (3.85 A),
TYR364 (3.50 A) ILE362 (3.14 A), hydrogen bonded inter-
actions with LYS42, ARG140, ALA176, ASN212, TYR271,
TYR290, TYR364, MET?319, ASP320 and also formed salt
bridges with HIS172 (3.79 A).

The co-crystallized (6SCZ-cycloserine) and docked com-
plex (1XFC-cycloserine) exhibited more similar intermo-
lecular interactions (Fig. S3) (Table 1). On superimposition
of the complexes, the backbone RMSD value was observed
to be 0.264 A, illustrating the predictive accuracy of the
docking protocol adopted.

Post docking analysis of alanine racemase vs.
the top-ranking ligands (ciprofibrate, belinostat,
flurbiprofen)

The post-docking study revealed that the top 10 com-
plexes (Table S1) had docking scores ranging from —8.0
to —9.0 kcal/mol. Among which the top three ranking
drugs were only stringently chosen based on binding affin-
ity and the quantum of intermolecular interactions: flurbi-
profen (DB00712), belinostat (DB05015), and ciprofibrate
(DB09064) all the three exhibited a similar binding affinity
score of —8.5 kcal/mol. The ciprofibrate-alanine racemase
complex showed six hydrophobic interactions with chain
A-TYR271(3.37 A, 3.54 A, 3.85 A), chain B-TYR 364(3.60
A) chain B- ILE362 (3.73 A) and chain A-MET319 (3.61
IOX) residues, and also formed hydrogen bonded interactions
with TYR290, MET319, ASP320 residues of chain A, and
one salt bridge with chain B-LYS42 (3.65 A). Whereas,
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Table 1 Comparison between the residual contacts of cycloserine docked to in 1XFC vs. 6SCZ (Co-crystallized with Cycloserine)

Types of interactions 1XFC

6SCZ

Hydrophobic interactions
TYR364B (366B)

Hydrogen bond LYS42B (44B), ARG140B (142B),ALA176B (178B),
ASN212B (214B),TYR271A (273A), TYR290A
(292A),MET319A (321A), ASP320A (322A), TYR364B
(366B)

Salt bridges HIS172B (174B)

n- stacking

TYR271A (273A), TYR290A (292A), ILE362B (364B),

TYR90B

LYS44B, TYR48B, TYR90B, ARG142B, SER215B,
ARG230B, GLY232B, ILE 233B, TYR273A,
TYR292A, MET321A, TYR366B

HIS174B

This study includes two crystal structures: 1XFC (with intact PLP) and 6SCZ (contains PLP in conjugation with D-cycloserine). In the case of
6SCZ, 387 residues have been crystallized while 1XFC had 384 residues been crystallized. Therefore 1XFC had a 3 residue difference when
compared to 6SCZ, hence it has a numbering difference as the 3rd residue of the protein is labelled as the 1st residue. To avoid confusion, the
actual numbering convention given in the PDB is followed as such. For better clarity, the equivalent residue number in 6SCZ is given in brackets

(Table 1)

belinostat-alanine racemase complex showed nine hydro-
phobic interactions with chain B residues:f ALA176 (3.20
A, 3.38 A), ASP177 (3.28 A), PRO240 (3.53 A), chain A
of TYR271 (3.40 A), TYR290 (3.66 A), chain B of ILE362
(3.21 A, 3.41 A) and TYR 364 (3.47 A), six hydrogen
bonded interactions with chain B residues namely, LYS42,
ALA176 along with chain A residues TYR271, ARG296,
MET319, ASP320. A n-stacking with chain B-TYR364 (4.69
1&) was also observed. In case of flurbiprofen, it showed 10

hydrophobic interactions with chain B-ALA176 (3.26 A),
chain A-TYR271 (3.40 A, 3.52 A, 3.67 A) chain A -TYR290
(3.84 A), chain A -MET319 (3.37 A), chain B- TYR364
(3.51 A, 3.62 A) and chain B -ILE362 (3.40 A, 3.71 A). It
formed hydrogen bonds with chain A-MET319 and chain
A-ASP320. It also featured n-cation interaction with chain
A-ARG296 (5.07 A) and halogenic interactions with chain
B-ILE317 (3.77 A) and 2 salt bridges chain B-LYS42 (3.58
A) and chain B-ARG140 (5.33 A) (Table 2) (Fig. S4).

Table 2 Post docking interactions analysis of protein and ligand analysis using PLIP

BA KDeep A Hydrophobic Hydrogen Salt bridges - n- Halogens
Drug name/ (keal/mol) G interactions bonds stacking cations
DrugBank ID/ (kcal/mo
structures 1)
Flurbiprofen -8.5 -7.19 ALA176B (178B), | MET319A (321A), LYS42B (44B), ARG296 | ILE317A
(DB00712) TYR271A (273A), | ASP320A (322B) ARG140B A (298A) | (3194A)
§ TYR290A (2924), (142B)
MET319A (321A),
O ILE362B (364B),
" TYR364B (366B)
Ciprofibrate -8.5 -7.53 TYR271A (273A), | TYR290A (292A), LYS42B (44B)
(DB09064) TYR290A (292A), | MET319A (321A),
o MET319A (321A), | ASP320A (322A)
o - ILE362B (364B),
TYR364B (366B)
HsC  CHy
¢ c
Belinostat -8.5 -8.64 ALA176B (178B), | LYS42B (44B), TYR364B
(DB05015) ASP177B (179B), | ALA176B (178B), (366B)
PRO240B (242B), | TYR271A (273A),
" @\/Wu TYR271A (273A), | ARG296A (298A),
N Z o ILE362B (364B), | MET319A (321A),
@ N o TYR364B (366B) | ASP320A (322A)

As this study includes two crystal structures: 1XFC (with intact Pyridoxal 5'- Phosphate (PLP)) and 6SCZ (contains PLP in conjugation with
D-cycloserine). In the case of 6SCZ, 387 residues have been crystallized while 1XFC had 384 residues been crystallized. Therefore 1XFC had a
3 residue difference when compared to 6SCZ, hence it has a numbering difference as the 3™ residue of the protein is labelled as the 1% residue.
To avoid confusion, the actual numbering convention given in the PDB is followed as such. For better clarity, the equivalent residue number in

6SCZ is given in brackets (Table 2)
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ADMETox prediction for the top three compounds

SWISS ADME prediction

The physicochemical properties like molecular formula,
molecular refractivity, and consensus log for the top three
ranking compounds were calculated. All these three com-
pounds demonstrated optimum ADME qualities with no
substantial violations and were also found to adhere to
the Lipinski, Ghose, Verber, Egan, and Muegge criteria,
whereas cycloserine adheres to only three (Lipinski, Verber,
Egan) regulations. Ciprofibrate, belinostat, flurbiprofen, and
cycloserine also featured bioavailability scores of 0.85, 0.55,
0.85, and 0.55, respectively. Among these, ciprofibrate and
belinostat were featured as lead-like compounds. All these
compounds do not violate PAINS. Three compounds have
promising synthetic accessibility values of 2.41, 2.94, 2.45,
and 2.73 (Table S2).

MD simulation analysis of Holo forms

Alanine racemase-cycloserine complex

The system tends to achieve convergence at 30 ns with an
RMSD of ~3.0 A, which was maintained throughout the

simulation. From 0-30 ns, the C-a RMSD ranged between
1.5 A and 2.2 A. The overall average RMSD was observed

=CommI(Lig) fit on Prot

(V) asiy puebr

25 50 75 100 125 150 175 200
Time (nsec)

EENCoMN(Lig) fit on Prot
c) =

Protein RMSD (4)
(V) aswy puebi

Belinostat

1 25 50 75 160 125 150 175 200
Time (nsec)

Protein RMSD (4)

tobe~23 A (Fig. 5a). The residue-wise RMSF plot analysis
revealed a minimal variation of approximately 3.0 Aanda
maximum fluctuation of 4.2 A, indicating the mobility of the
compound to be constrained within the complex. A favorable
association between the ligand and protein (considering both
chains) was seen in the residue stretches: 400-600, 700-720,
and 250-310, as observed in the RMSF plot (Fig. S5a).
(Fig. S6a) indicates that the ligand atoms 9 and 21 fluctu-
ate to a maximum of ~2.0 A. Various interactions such as
hydrophobic, water bridges, ionic, and hydrogen bonds were
observed in residues TYR 271A, HIS 273A, MET319A,
LYS42B, HIS172B, MET173B, VAL174B, ASP177B, and
ASN 212B, while ASP 320A exhibited hydrogen bonded
interactions and water bridges throughout the simulations,
within the range of 0-70%. The protein—ligand complex dis-
played 6-12 contacts up to 50 ns, 1-5 contacts from 50-100
ns, 5—-12 contacts from 100-125 ns, and 1-8 contacts from
125-200 ns (Fig. 6a). The structural compactness was con-
stant during the simulation. In the case of the Rg (radius of
gyration) plot, 3.30 A t0 3.45 A of variation was observed
(Fig. S7a). Ligand torsion plot analysis revealed ten rotatable
bonds between the atomic pairs: 4-21, 5-10, 10-2, 2-11,
13-16, 6-14, 14-17, 17-22, 19-22, and 20-22 (Fig. S8a).
The conformational deviations of each rotatable bond dur-
ing the simulation (0-200 ns) are illustrated by this ligand
torsions plot(Fig. S8).

—Cmm(Lig) fit on Prot

(v) aswy puebi

% Ciprofibrate 06

25 50 75

160 125 150 175 200
Time (nsec)
ECoE(Lig) fit on Prot.

(V) aSwy puebry

Flurbiprofen
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Fig.5 The C-a root mean square deviation of holoenzyme-ligand complexes for 200 ns
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Fig.6 Protein-ligand contacts of a Alr-known inhibitor (cycloserine) and b Alr-ciprofibrate (DB09064) ¢ Alr-belinostat (DB05015) and d Alr-

flurbiprofen (DB00712)

Alanine racemase-ciprofibrate complex

During the simulation process, the protein and ligand
remained in close contact within the binding cavity, with
an RMSD range of 1.5 At02.5 A and an average of 2.1 A.
The complex was shown to remain stable throughout the

@ Springer

simulation, with system convergence occurring at 50 ns in
the ligand-bound state (Fig. 5b). The RMSF plot indicated
stablization at residue stretches: 260-310, 400-540, and 720
(Fig. S5b). Moreover, the atoms 12, 17, and 18 of the ligands
exhibited fluctuations ranging from 1.1 Ato2A (Fig. S6b).
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On analyzing the protein—ligand contacts across the trajec-
tory, it revealed that ligands form specific interactions, such
as hydrophobic interactions and water bridges with TYR
271A, hydrophobic interactions and a strong hydrogen bond
with MET 319A, water bridges and strong hydrogen bonds in
ASP 320A, hydrogen bond as well as water bridges with LYS
32B, hydrophobic interactions with TYR 364B. The ligand
showed varying numbers of contacts at different time points,
with 0-3 contacts until 10 ns and 3-7 stable contacts till 200
ns (Fig. 6b). The Rg analysis also indicated structural com-
pactness, with Rg values ranging from 3.9 Ato4.1A through-
out the production run. This ligand also exhibited four inter-
nal hydrogen bonds ranging from 75-100 ns to 150-200 ns
(Fig. S7b). The ligand possessed six rotatable bonds at atomic
pairs: 11-1, 4-14, 14-7, 7-10, 16-10, and 10-5 (Fig. S8b).

Alanine racemase-belinostat complex

The protein exhibited an average C-o RMSD of 1.8 A,
with a range of 0.8 A t0 2.8 A. deviation. Convergence was
observed on the RMSD plot at 180 ns, with a difference
of~3.2 A in the ligand-bound state (Fig. 5c). The RMSF
plot also indicated indicated stablization at residue stretches:
250-310, 400-410, 500-600, and 600720 (Fig. S5c). Fluc-
tuations were also observed in the ligand atoms 2, 11, 12,
16, 17, and 21 (Fig. Séc).
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Fig.7 2D representation of protein—ligand contacts for the entire 200 ns

According to the protein-ligand contact analysis, TYR
290A exhibited hydrogen-bonded interactions, hydrophobic
interactions, and water bridges 98% of the time. MET319A
showed hydrogen bond and water bridge interactions 90%
of the time. ARG316A and CYS318A displayed a range of
interactions including hydrogen bonds, hydrophobic interac-
tions, and water bridges, accounting for 30% to 65% of the
time. ASP320A showed 55% interactions with water bridges.
ILE362B exhibited hydrophobic interactions for 35% of the
time. TYR364B showed interactions between hydrophobic
and water bridges 40% of the time. The protein—ligand com-
plex also maintained 3 to 9 contacts from 0 to 150 ns, and 3
to 5 contacts from 150 to 200 ns (Fig. 6¢). Rg values ranged
from 3.3 A t0 3.7 A during the simulation, indicating that
the complex had retained structural compactness. The ligand
also showed one internal hydrogen bond between 175-200
ns (Fig. S7¢). The ligand contained 7 rotatable bonds, spe-
cifically between atomic pairs: 21- 2,2 —17, 17- 16, 5-5,
3-22,22-1, and 1-9 (Fig. S8c). The percentages of second-
ary structure elements maintained during the complex simu-
lation are as follows: helices accounting for 24.41%, strands
for 21.48%, and the total secondary structure elements
accounting for 45.89% (Fig. S9c). Protein—ligand complex
interactions are also illustrated in a two-dimensional form
as seen in (Fig. 7c¢).
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Alanine racemase-flurbiprofen complex

The C-apha RMSD values of the alanine racemase-flurbipro-
fen complex ranged from 0.5 Ao 1.0A during 0-20 ns, and
it ranged from 2.3 At33A during 21-55 ns. At 60 ns, the
ligand exhibited increased deviation with an RMSD of ~3.2 A
t0 3.8 A, and the convergence was also observed at 50 ns. The
protein C-a showed an average RMSD of 2.0 A (Fig. 5d). The
residue stretches: 250-310, 400-410, 500-600, and 600-720
showed favorable fluctuation, as per the RMSF plot (Fig. S5d).
Fluctuations were observed in ligand atoms stretches 12—14
and 1618, ranging from 3.5 A to 4.0 A (Fig. S6d). The ligand
also showed intermolecular interactions such as water bridges,
hydrogen bonds, and hydrophobic interactions with various
residues including TYR 271A, TYR 290A, ARG 296A, MET
319A, ASP 320A, LYS42B, TYR 46B, VAL 174B, ALA
176B, ASP 177B, ASN 212B, and SER 214B. PRO 238B also
exhibited hydrogen bonds and water bridges for approximately
90% of the time, while PRO 240B, ALA 356B, ILE 362B, and
HIS 363B showed varying degrees of hydrophobic interactions
(20-55%). TYR 364B showed hydrogen bonds, and hydropho-
bic and water bridge interactions for approximately 60% of the
time. The protein-ligand complex showed 3—7 intermolecular
contacts throughout the simulation (Fig. 6d). The Rg values
ranged from 3.50 A 103.60 A, indicating that the complex
has maintained structural compactness during the simulation
(Fig. S7d). The ligand possessed four rotatable bonds between
land 7,7 and 9, 9 and 17, and 10 and 2 atoms (Fig. S8d).
Protein—ligand complexes interactions were visualized in two
dimensions as shown in (Fig. 7d) using Schrodinger’s maestro
(Version 12.8).

Ciprofibrate stands out as the most promising compound
due to its superior structural stability and favorable interac-
tion patterns with alanine racemase. This suggests its poten-
tial as a lead candidate for anti-TB drug development.

Across all complexes, residue stretches (considering both
chains) such as 250-310, 400-600, and 600-720 were identi-
fied as critical regions for maintaining stability and ligand inter-
action. The intermolecular interactions, including hydrophobic
interactions, hydrogen bonds, water bridges, and salt bridges,
were pivotal in stabilizing the protein—ligand complexes. The
identified interactions and structural stability reinforce the
potential of ciprofibrate, belinostat, and flurbiprofen as viable
alanine racemase inhibitors. Among these, ciprofibrate demon-
strated superior stability and interaction patterns, highlighting
its potential as a hit for further anti-TB drug development.

Discussion
Tuberculosis (TB) continues to pose a significant global

health challenge, particularly in low- and middle-income
countries, where it remains a leading cause of mortality and
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morbidity. The emergence of drug-resistant TB has intensi-
fied this crisis, underscoring the urgent need for innovative
therapeutic strategies. This study employed a computational
drug repurposing strategy to identify potential inhibitors tar-
geting alanine racemase, a critical enzyme in the peptidogly-
can biosynthesis pathway which is absent in humans. Vir-
tual Screening FDA-approved drugs from DrugBank 5.1.9,
followed by comparative molecular docking studies using
cycloserine, a known alanine racemase inhibitor has led to
the identification of three potential candidates: ciprofibrate
(DB09064: Targets PPAR-alpha and is used to treat hyper-
lipidemia), belinostat (DB05015: Targets histone deacety-
lases (HDACs) and is approved for peripheral T-cell lym-
phoma), Flurbiprofen (DB00712: Targets COX-1 and COX-2
and is used for pain, inflammation, and arthritis) (www.
drugbank.com). All three candidates demonstrated strong
binding affinities and favorable interaction profiles within
the active site of alanine racemase. Molecular mechanics
generalized Born surface area (MMGBSA) and free energy
change (AG) analyses confirmed the stability and potential
efficacy of these compounds. Among these candidates, cip-
rofibrate (DB09064) stood out as the most potential hit. Its
strong binding stability, robust interactions within the active
site of alanine racemase, and similarity to cycloserine in
interaction patterns and structural stability (RMSD) during
MD simulations highlights its potential efficacy. These find-
ings provide a strong rationale for exploring ciprofibrate as a
potential moiety for consideration into preclinical and subse-
quent clinical studies as a novel treatment for drug-resistant
TB. However, recent studies raise concerns about the use
of fibrates in tuberculosis (TB) treatment (Liu et al. 2020).
Notably, fenofibrate, a widely used lipid-lowering drug, has
been found to promote Mycobacterium tuberculosis (Mtb)
survival in macrophages as per in vitro studies. This effect
is linked to its ability to alter lipid metabolism, increasing
intracellular lipid accumulation an environment that favors
Mtb persistence and growth. However, it should be noted
that In vitro bacterial survival and concentration measure-
ments do not fully replicate the complex growth dynamics
of Mtb within a host environment (Liu et al. 2020). While
Ciprofibrate shares structural similarities with other fibrates,
there is currently no experimental data confirming whether
it promotes or inhibits Mtb survival in macrophages. This
remains an open question requiring direct investigation,
as Ciprofibrate exhibits differential pharmacokinetics and
molecular interactions compared to other fibrates.

Despite these concerns, ciprofibrate presents a unique
opportunity for repurposing in TB therapy. Our docking
and molecular dynamics simulations suggest that ciprofi-
brate binds strongly to Mtb’s alanine racemase, an essential
enzyme for bacterial cell wall synthesis. Unlike fenofibrate’s
indirect effects on host metabolism, ciprofibrate may also
exert a more direct antibacterial action by targeting a key
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metabolic enzyme. However, given the metabolic effects
seen with other fibrates, it is crucial to investigate whether
ciprofibrate similarly influences host lipid metabolism and
Mtb survival. Further in vitro and in vivo studies will be
essential to determine its potential as a viable TB therapeu-
tic. If validated and found suitable, this repurposed drug
could offer a cost-effective and readily available therapeutic
option, particularly in high-burden regions.

This study underscores the value of computational drug
repurposing in addressing the critical need for new TB thera-
peutics. Beyond identifying potential inhibitors, it highlights
the importance of detailed structural and thermodynamic
analyses to validate drug-target interactions. These insights
can streamline the drug discovery process, reducing costs
and development timelines. Future research should focus on
preclinical and in vivo evaluations of ciprofibrate to assess
its pharmacokinetics, efficacy, and safety for TB treatment.
Additionally, exploring combinatorial therapies involving
ciprofibrate and existing anti-TB drugs may enhance treat-
ment outcomes, particularly against multidrug-resistant
TB strains. The continued advancement of computational
approaches holds great promise for uncovering new thera-
peutic avenues, ultimately contributing to more effective TB
management strategies.

Conclusion

In conclusion, this study highlights the urgent need for new
treatment strategies to combat tuberculosis (TB), especially
as drug-resistant Mycobacterium tuberculosis (Mtb) strains
continue to rise. Using a computational drug repurpos-
ing approach, we predicted potential inhibitors of alanine
racemase, a key enzyme in bacterial cell wall biosynthesis.
Screening FDA-approved drugs from DrugBank 5.1.9, fol-
lowed by molecular docking and comparative analyses with
cycloserine, a known Alr inhibitor, revealed three potential
candidates: ciprofibrate, belinostat, and flurbiprofen which
showed appreciable binding affinities, stable interactions,
and favorable drug-like properties. Among these, ciprofi-
brate, a fibrate used to lower cholesterol, exhibited strong
binding stability and most favorable interactions within
the Alr active site. Unlike fenofibrate, a prodrug requiring
hepatic activation, ciprofibrate is an active drug with a lower
molecular weight, which may influence differential pharma-
cokinetics and molecular interactions. However, its potential
effects on Mtb remain untested, and the broader implications
of fibrate use in TB therapy are still unclear. Fenofibrate,
have been shown to modulate lipid metabolism in mac-
rophages, potentially enhance Mtb persistence in vitro, how-
ever, it should be noted that In vitro bacterial survival and
concentration measurements do not fully mimic Mtb growth
dynamics in a host environment. While ciprofibrate shows

computational promise, rigorous experimental validation is
essential to confirm its therapeutic potential. Given these
uncertainties, lead optimization is essential to refine this
compound towards improving its binding affinity, specific-
ity, and pharmacokinetics while reducing off-target effects.
Fragment-based drug design (FBDD), free energy perturba-
tion (FEP), and molecular dynamics simulations could help
optimize its efficacy. While this study lays the groundwork
for repurposing ciprofibrate and related compounds, exten-
sive experimental validation including enzyme inhibition
assays, bacterial growth studies, and host—pathogen inter-
action models is crucial to assess their real-world potential.
Ultimately, this research highlights the power of compu-
tational drug repurposing in accelerating TB drug discov-
ery and underscores the importance of a multidisciplinary
approach to validate and optimize promising candidates.
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