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ABSTRACT 1 

The Markov Chain Monte-Carlo (MCMC) born in early 1950s has recently aroused great interest 

among statisticians, particularly researchers working in image analysis, discrete optimization, neural 

networks, genetic sequencing and other related Eelds. Recent theoretical achievements in resampling 

procedures provide a new perspective for handling errors in Bayesian inference, which treats all unknowns 

as random variables. The unknowns include uncertainties in the model such as fixed effects, random 

effects, unobserved indicator variables and missing data. Only in few cases, the posterior distribution is in 

standard analytic form. In most other models like generalized linear models, mixture models, 

epidemiological models and survival analysis, the exact analytic Bayesian inference is impossible. This 

paper surveys some of the recent advances in this area that allows exact Bayesian computation using 

simulations and discusses some applications to biomedical data. 
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Introduction 4 

Markov Chain Monte Carlo (MCMC) is a powerfirl technique for performing integration by 

simulation. In recent years MCMC has revolutionized the application of Bayesian statistics. Many high 

dimensional complex models, which were Formally intractable, can now be handled routinely. MCMC has 

also been used in specialized non- Bayesian problems. A good introduction on MCMC methods in 

biostatistical applications can be found in Gilks et al (1996) and Gelman and Rubin (1996). The 

techniques have been applied in most areas of statistics and Biostatistics namely vaccine efficacy, 

genornics, proteomics, clinical monitoring, p b a ~ ~ k i n e t i c s ,  disease mapping, image\dysis ,  genetics 

and epidemiological research. Gilks et d (1996), Beny and Stangle (49-96) &SIOI&~ applidons in 

hision analysis, clinical trial design, and cross over trials, meta &ys%s, ~hange point analysis, 

hernodynamics and prenatd mortality. The applications of MCMC in modeling situations 

involve hierarchical models, missing data, censored data, and spatially correlated data. MCMC methods 
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The use of MCMC was first introduced in statistical mechanics by Metropolis et al (1953 

study the equation of the state of a two-dimensional rigid sphere system. The choice made by Metrop 

et al(1953) was one of many other possibilities. They introduced MCMC as a general method suitable 

fast cornputin; machines of calculating the properties of any substance considered as composed 

interstikg individual molecules. Now this method has become a miraculous tool of Bayesian anal: 

(Geyer, 1,992) and the flag of what has .been Galled as the model liberation movement (Sm 

1992). Bayesian cdcdations not analytically trac&ble  cat^ be paformed ohce a likelihood and prior 

given (&sag et al, 1995). For non-Bayesian application0 MCMC is considered as a very pawel 
I 

numerical device in likelihood analysis or decision'theory (Geyer, 1992). 

Early 1990 have witnessed a burst of activities in applying MCMC in Bayesian methods 

simulate Bayesian distributions. The simulation algorithm in its basic form is quite simple and 

becoming standards in many Bayesian application .A good review is given by Gilks et al (1996). MCI 

methods have been successfully used to over come problems caused by ?issing data when using sn 

networks for conventional statistics. All MCMC methods are ways to produce a stochastic process, wh 

has a desired distribution as its stationary distribution .The theory of stochastic processes tells as that 

empirical average of a function of the stochastic process will converge to the expectation of that h c t  

under the desired distribution. MCMC is the idea of using simulations XI, X2,. . .Xn of the Markov Ch 

to approximate expectations p=E,(g(Xi)) by sample averages pn=l/nCg(Xi) where x is equilibri 

distribution also called invariant distribution, stationary distribution or ergodic limit of the Markov Chsu 

Gibbs Sampler 

The two most commonly used algorithms in MCMC appl'ications are (i) Metropolis Algorithms and 

Gibbs Sampler. Geman and Geman (1984) present the Gibbs sampler in context of spatial proces 

involving large number of variables for image reconstruction. They consider situations under which 

conditional distributions given neighbourhood subsets of the variables uniquely determine the j c  

distribntions. Besag and York (1989) has shown that if the joint distribution P (81, . . . . . . . ed) 

positive over its entire domain, then the joint distribution is uniquely determined by the d conditio 

distributions P ( el I e2, ..., Bd ) ..... P (Od I 81, ..., 8d-l). Li (1988) applied the Gibbs sampler in . 
I 10 
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Intext of multiple imputations. Li suggests that the complete data be partitioned into d+l parts, 

0, XI,. . . .. Xd, where the observed data Xo and XI, . ..,Xd is a partition of missing data. Li hsurnes that Xi 

m be sampled fiom P (Xi / Xj, j + i) and the algorithm is as follows: 

tepl : Sample XI ('I, . . . ,xd(O) from some distribctions. 

:ep 2: Sample x18) fiom P( XI/ &, x ~ ~ - ~ ) ~ .  . .,&C-l) ) 

Sample x ~ ~ )  fiom P( X2/ Xo, xlQ) , x3B1) , . . . 
Sample from P( Xd/ xOI xpQ) . . . . . ) 

ep 2 is repeated until the algorithm converges. Li suggests that multiple paths be considered to check for 

mvergences. He @so illustrated the method in the context of categorical data, latent variables, and 
r 

4nsored life data and provide conditions for the distrjbution of  XI(^).. . . . . ~ d ( ~ ) )  to converge to P(OXI, X2 

. Xd). Like Metropolis d ( 1 9 5 3 )  and Geman and g em an (1984), Li represents the process as Markov 

lain with the joint posterior distribution as the stationary distribution. 

Tanner and Wong (1987) present the data augmenta:tion algorithm, which is a two-component version 

the Gibbs sampler. One of the basic contributions of Tanner and Wong (1987) was to develop the 

unework in which the Bayesian can be performed in the context of iterative Monte Carlo algorithms. 

oreover, in their rejoinder they sketch a Gibbs sampler approach for handling hierarchical models with t 

.ors. Gelfand and Smith (1 990) present a review.of data augmentation, the Gibbs sampler and the SIR 

gorithm due to Rubin (1 987). The papers by Gelfand @ (1 990, 1992) and Carlin et al(1992) apply the 

bbs sampler to a variety of important statistical problems. 
88 - ' 

etropolis-Hasting Algorithm 

The more general updating scheme as a firm of the generalized rejection samplings is the 

:tropolis algorithm Hasting (1970) updated in the Metropolis algorithms using arbitrary transition 

~bability function. We first consider the idea in the discrete cask. Let Q = { qd ) be a 

:cified symmetric transition matrix. At a given step, randomly draw state sj fiom the iF row of Q. With 

own probability aq, move from si to sj, otherwise, remain at step si. This construction defines a Markov 

i n  with transition matrix pq = cqqq ( i+j) and pii = 1 -2 Pij, 
3 
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It i 1 ' if -21 

Where aij 
7r. 
J j if -<I 

This chain is reversible, since 

= Min {ni, nj 1 qji ? 

- -njPji 
I 

The equilibrium distribution will be unique if Q is irreducible. A suff~cient condition for convergence 

is not constant). is being able to move from any state to any other under Q takes .aj=nj l(ni+nj) (Barker 

1965). The resulting chain is reversible, since, nipij'E1 nj I(ni+~)c[ij=~jpii . 

Now we consider the idea in the continuous case: Here n is a density with respect to a measure p and 

f (x, y) is a symmetric transition probability function (i.e., f (x, y) = f (y, x)), then the Metropolis 

algorithm is given by the following two steps. 

(a) If the chain is currently at Xn = x, then generate a candidate value y V o r  next location X,+, 

f(x,y). 

(b) With probability a(x,y*)=rnin 1 ,n(y*)l n(x) , accept the candidate value and move the cht 

Xn+1 = y *. Otherwise reject and let Xn+1 = X. Thus the Metropolis algorithm . 

yields a series of dependent realizations forming a Markov chain with n as its equilibrium distributic 

key observation is that the Metropolis .algorithm only requires that n be defined up to the normal 
I 

constant, since the constant drops out in the ratio n(y*)/ x(x). 

Tierney (1991) presents a number of suggestions for f(x, y). If f(x,, y) = f(y-x), then the chi 

driven by a random - walk process. Possible candidates for fare the multivariate normal, multivariat 
. . , . 

split t (with .a small degrees of freedom). In situations where the multivariate t is used to 'ger 

candidate values, one would center the normal or the t at the current state of the chain x, with the vari 
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covariance matrix possibly equal to some multiple of the inverse information at the posterior mode. 

Muller (1991) discusses the choice of scale issue in detail. Besides presenting thelrange of hybrid 

strategies by cycling1 mixing different chains, Tierney also (1991) presents foqnal conditions for 

convergence, rates of convergence, and limiting behavior of averages. Gelfand (1992) presents an 

analogue to the Gibbs stopper for the Metropolis algorithm. 

A earliest generalization of the Metropolis algorithm w~ due to Hastings (1970) which defines 

if x(x) q (x, y) = 0 

-where q (x, y) is an arbitrary transition probability function. If q is symmetric i.e., q (x, y) = q (y, x), as 
* 

would be the case in using a multivariate normal or mu1;tivariate t lo  drive the algorithm, then the Hastings 

ajgorithm reduces to the Metropolis algorithm. Hastings (1970) ! considers the case where 

q (x, y) = q (y), which is closely related to impoitance sampling. Tierney (1991) calls this as independence 

chains. This form of acceptance probability is not unique since there may be many acceptance functions, 

which provide a chain with the desired properties. However Peskun (1973) showed that-this form is 

optimal in that suitable candidates are rejected less often and so efficiency is maximized. 

Bayesian Inference using Simulation 

Given a set of posterior simulation draws el, ..., eN of a vector parameter 0, one can estimate the 

posterior distribution of any quantity of interest. For example with N=1000 simulation draws one can 
I* 

estimate a 95% posterior interval for any fiction +(el y) of parameters and data by the 25' largest and 

975' largest simulated values of +(eL, y), L = 1 .... ,1000. In some problems such as the normal linear 

regression model random draws can be obtained from the posterior distribution directly in one step 

(Gelman et al 1995). In other complicated cases such as normal linear regression model with unknown 

'variance, the parameter vector can be partitioned into two sub vectors 0 = (81~82) such that the posterior 

distribution of el, p(O1/y) and the conditional posterior distribution of O2 given 81, p(82I81 ,y) are both 

standard distributions from which simulations can easily be drawn. 
I 

Many problems such as generalized linear models and hierarchical models direct simulation is not 

possible even with two or more steps. Until recently these problems have been attacked by approximating 

the desired posterior distributions by normal or transformed normal distributions from which direct 

simulation can be drawn in recent years iterative simulation methods such as MCMC have been developed 
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to draw fiom general distributions without any di~ect need for normal approximation (Gelman 

Rubh1996). The advantage of these iterative methods is that they can be setup with virtually any m 

that can be setup in statistics. The main limitation is that they c m a t l y  require extensive program 

and debugging. In hyesian posterior distribution, the god of iterative simulation is the inference a' 

the target distribution and not merely some moments ofthe target distribution. So it is desirable to chi 

starting points that widely dispersed in the target distribution over dispersed starting points art 

important design feature of MCMC for two major reasons. 

1. Starting far apart can make lack of convergence apparent. 

2. Starting over dispersed can ensure that all major' reasons of the target distributions 

represented in the simulation. 
* 

The chain of the class of models where MCMC is easy to use, assessing the convergence, 4 
* 

guidelines for starting values. Methods assessing the behavior of the chain and useful softwares 

extensively discussed by many authors.( e.g. Kass et al 1998,Spiegalhdter et al 1995,Cowles and C 

1996, Gelman and Rubin 1992, Boscardin 1996, Gerlman 1996, Besag and Green 1993, Geyer 

Thompson 1995, Gelfand et al 1995,1996, Besag et a1 1995 etc.) 

An Application to Medical Data. 

We illustrate the application af MCMC with a mixed model to data obtained from patients with 1 

attack (PD). This application is complicated that Markov Chain simulation methods are the most effel 

tool for exploring the posterior distribution ,. 

Panic Attack Data 

In the experiment under study of 20 subjects - 10 controls (5 males and 5 females) an 

patients (6 males and 4 females) had their ECG measured continuously for 60 beats. We briefly re 

h e  basic statistical approach here. The R-R intervals at 60 beats on standing were compared for cor 

and patients. The patients with PD showed a highly significant decrease in R-R variance upon star 

from supine posture when compared to that of controls. During an induced panic attack with 5% 

inhalating in PD patients, the R-R variance further decreased when compared to the levels beforc 

attack.. 
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Finite mixture likelihood model 

To address the problem the following basic model was fit. R-R variance of the conbols is described by 

m effect model in which the responses Yij (i = 1, 2,. . .,20) of person j ( j = 1, 2,. . ., 10) are normally 

buted with distinct mean aj and common variance 0:. To reflect the response of PD. patients 

= 11 to 20) are modeled as a two compartment mixture with probability (1 - h) for controls and R - R 

variance is normally distributed with me? aj and variance 0; and with probability h for R-R variance of 

the PD patients with mean aj - Z and the same variance C T ~  who exhibits symptoms such as palpitation, 

, swatting, dizziness, shortness of breath and other atomic symptoms (Bharathi 1994). These are 

attributed to the dysfunction of bath sympathetic and parasympathetic systems in these patients. 

. ,Hierarchical Papulati~n Model 1 

The comparison of the components of a = (al ,  012, a3,. . ., 0120) for PD patients verses controls 

actdresses the magnitude of decrease in cholinergic activity. We include a hierarchical parameter P 
measuring the activity. Specifically variation among the individuals is modeled by haviqg the means aj 

f 6 h v  a normal distribution with mean p for controls and p + P for PD patients with each distribution 

"'having variance 0:. i.e., the mean of aj in the population distribution is p + pSj where Sj is an indicator 

variable with 1 if the person j is PD and 0 otherwise. We followed the Bayesian model with an improper 

" uniform prior distribution on the hyper parameters 4 = (0;) C T ~ ,  h, p, p, Z)as given by Gelrnan and 

Rubin (1 996). 

; .Pasterior Modes using Expectation Conditipnal Maximization @CM) Algorithm 
i '  We draw 100 points at random &od the distribution and use each as a starting point for the ECM 

+ ~ 

algorithm to search for modes as given by Cfelman and Rubin (1996). We also approximated the posterior 

distribution by a multivariate t distribution centered at the major mode of ECM with covariance matrix as 

the inverse of negative of the second derivative matrix of the log posterior'density. We have drawn 1000 

independent samples and importance resample a subset of 10, which w& used as a starting point for 

dependent Gibbs samplers. I 

I 
The Table I displays the posterior inferences and potentid. scale reduction factor for selected 

rs after 5.0 iteratMns and 200 itetati~bsl TBO i~erdibns, the potential sc,de reduction factor . 
, ' 

imately 1 for all parameters in the model. 
i 
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'I"yrl*a 3: Baskxior quantiles and estimated potential scale reduction factors for parameters. 

. . . ---- .... - . . " .  .----..---p----r -' .- 

j After 50 iterations After 200 iterations 
< l?ammeter ; -,.---,-..-.--..--. . 

I i F5% 50% 97.5% JR i2.5% 50% 97.5% JR 

Discussion 

The existing MCMC methods provide a powerful statistical tool and have revolutionized Practi 
* 

Bayesian statistics over the past few years. The Ability to fit complicated models with little programrn 

effort is in fact a key advantage of MCMC methods. The YCMC simulation should be undertaken a1 

the problem has been approximated and explore using simple methods. ThLre are a variety of methods 

constructing efficient MCMC algorithms. However the implimentation of many of these methods reql 

some expertise. The main problem is ascertaining the proximity of the diskbution of any given Marl 

chain output to the target distribution. Even though the recent works focls on construction of samr 

without this problem using exact samples. Considerable work is still needed on the implimentation issu 
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