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ABSTRACT a

The Markov Chain Monte-Carlo (MCMC) born in early 1950s has recently éroused great interest
among statisticians, particularly f¢searchers working in image analysis, discrete optimization, neural
networks, genetic sequencing and other related Tields. Recent theoretical achievements in resampling
procedures provide a new perspective for handling errors in Bayesian infere:nce, which treats all unknowns
as random variables. The unknowns' include uncertainties in-the model such as fixed effects, random
effects, unobserved indicator variables and missing data. Only in few cases, the posterior distribution is in
standard analytic form. In most " other models like generalized .linéar models, mixture models,
epidemiological models and survival analysis ‘the exact analytic Bayesian inference is impossible. This
paper surveys some of the recent advances in this area that allows exact Bayes1an computation using

simulations and discusses some applications to biomedical data.

Keywords . Bayesian inference, Markov Chain Monte Carlo, Gibbs, Metropolis, mixture
model, hierarchical model, ECM algorithm, panic attack.
Intfoduction ‘ ) 3 \

Markov Chain Monte Carlo (MCMC) is a powerful technique for performing integration by
simulation. In recent years MCMC has revolutlomzed the application of Bayesian statistics. Many high
dlmensmnal complex models, which were fonnalty mtractable can now be handled routinely. MCMC has
also been used in specialized non- Bayesian .problems. A good introduction on MCMC methods in
biostatistical applications can be found in Gilks et al (1996) and Gelman and :Rubin (1996). The
techniques have been applied in most areas of statistics and Biostatistics namely vaccine efficacy,
genomics, proteomics, ‘clinical monitoring, pharmacokmetxcs, disease mapping, image analysis, genetics
and epidemiological research. Gllks et al (1996), Berry and Stangle (1996) describe: .appficaﬁons in
decision analysis, clinical trial design, and: ,crbss over trials, meta analysis, chamge point analysis,
hemodynamics | and prenatal mortality. The applications of MCMC in. modeling situations

involve hierarchical models, missing data, censored data, and spatially correlated data. MCMC methods
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y in statistical physics over the last 40 years, in spatial statistics for the |

yesian 1mage analy51s over the last 10 years (Gllks et al 1996) In the last 5§ y

F g i
. 1 thitod ced inith S1gmﬁcance testlng, ‘general Bayesmn inference and maxin
“fikelihiood estimation.

The use of MCMC was first inﬁfoduced in statistical mechanics by Metropolis et al (1953
study the equation of the state of a two-dimerisional rigid.sphere system. The choice made by Metrop
et al (1953) was one of many other possibilities.v They introduced MCMC as a general method suitable
fast eomputing machines of calculating the properties of any substance considered as composed
interacting ,i-z;divivdual molecules. Now this method has become a miraculous tool of Bayesian anal
‘(@eyer, .-.- 1«9~9;2;);<,and the flag of what has ‘been called as the meodel liberation movement (Sm
1992). Bayesian calcﬁlatiqns»not analytically tractable cah be perfonned once a likelihood and. prior
gfiv_ep_(B,esag. et al, 1995). For non-Bayesian aplication,g, MCMC is considered as a very pawel
numerical device in likelihood analysis or decision theory (Geyer, 1992).

Early 1990 have WItnessed a burst of activities in applying MCMC in Bayesian methods
snnulate Bayes1an dlstnbutlons The simulation algorithm in its basic form is quite simple and
becomln_g standards in many Bayesian application .A good review is given by Gilks et al (1996). MC!
ﬁxevth.odsvhave been euccessﬁﬂly used to c'>.ver} come pfebiems caused by missing data when using sn
networks for conventional statistics. All MCMC methods are ways to produce a stochastic process, wh
has a desired distribution as its stationary distribution .The theory of stochastic processes tells as that
empirical average of a function of the stochastic process will converge to the expectation of that funct
under the desired distribution. MCMC is the idea of using simulations X, 'Xz, .X, of the Markov Ch
to approxunate expectations p= ,,{g(X.)} by sample averages pun=1/n2xg(X;) where = is equilibri
dxsmbutmn also called mvanant distribution, stationary distribution or ergodic limit of the Markov Chai

Gibbs Sanipler o

The two-most commonly used algorithms in MCMC applications are (i) Metropohs Algorithms and
Gibbs Sampler. Geman and Geman (1984) present the Gibbs sampler in context of spatlal proces
mvolvmg large number of variables for image reconstruction. They consider situations under which
conditional distributions given neighbourhood subsets of the variables uniquely determine the jc
distdtions., Besag and York (1989) has shown that if the joint distribution P (81, 02, ....... 0g)

positive over its entire domain, then the joint distribution is uniquely defermined by the d conditio
diétributions P(61/0z ...8¢) ..... P (84 / 64, vees B4-1). Li (1988) ap;:)lied the Gibbs sampler in
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ntext of multlple imputations. Li suggests that the cornplete data be partitioned 1nto d+1 parts,

0 X1,..... Xy, where the observed data X and X, ...,X4 is a partition of missing data. Li assumes that X;
n be sampled from P (X;/ X;, j« i) and the algorithm is as follows:

tepl: Sample X, © . X, from some distribitions.

ep 2: Sample X, ¥ from P( X1/ Xo, X207,..., X))
Sample X,9 from P( Xo/ Xo, X149, Xa&1 .. X&0),...,
Sample X4 from P( X/ Xo, X2% , ...... Xat®)

ep2is repeate& until the algorithm converges. Li suggests tﬁat xhuliiple paths be considered to éheck for
mvergences. He also illustrated the method in the context of categoncal data, latent variables, and
nsored life data and provide conditions for the distribution of (X4?...... Xd(')) to converge to P(0Xi, X,

Xd) Like Metropolis et.al (1953) and Geman and Geman (1984), Li represents the process as Markov
sain with the joint posterior distribution as the statlonary dlstnbu’aon

Tanner and Wong (1987) present the data augmentation aflf.gorit-hm, which is a two-component version
‘the Gibbs, sampler. One of the basic contributions of Tanner and Wong (1987) was to develop the
umework in which the Bayesian can be performed in the context of iterative Monte Carlo algorithms.
oreover, in their rejoinder they sketch a Gibbs sampler approach for handling hierarchical models with t
-ors. Gelfand and Smith (1990) present a review.of data augmentation,.the Gibbs sampler and the SIR
gorithm due to Rubin (1987). The papers by Gelfand et.al (1990, 1'992) and Carlin et al (1992) apply the
bbs sampler to a variety of important statistical ~problérns. | |

- - -
etropolis-Hasting Algorithm ‘ .

The more general updating scheme as a form of the generalizéd rejection samplings is the
=tropohs algorithm Hasting (1970) updated in the Metropolis algonthms using arbitrary transition
)bab111ty function. We first consider the idea in the discrete case Let Q = { qj } be a
scified symmetng: transition matrix. At a given step, randomly draw state s; from the i row of Q. With
own probability aj, move from s; to s;, otﬁerwise, remain at step s; This construction defines a Markov |

iin with transition matrix  pj= o;q; (i) and pi=1 -Z Dij»
. . ﬁ
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Where Ol = - ”’
T e

This chain is reversible, since
T
TP T m min 1, = Qij
T
=Min {m;, m;} of
= Min {m, m } g
=TiPji
The equilibrium distribution will be unique if Q is irreducible. A sufficient condition for convergenée -

is not constant)_' is being able to move from any state to any other under Q takes o=m; /(nj+m;) (Barker

1965). The resulting chain is reversible, since, mpi=m m /(7i+m)0=nPji .

Now we consider the idea in the continuous case: Here m is a density with respect to a measure p and
f (x, y) is a symmetric transition probability function (i.e., f (x, y) = f (y, X)), then the Metropolis
algorithm is given by the following two steps.

(a) If the chain is currently at X, = x, then generate a candidate value y* for next location Xp+)

f(x,y).

(b) With probébility a(X,y*)=min 1,n(y*)/ n(X), accept the candidate value and move the che
X1 =y *. Otherwise reject and let  Xq+ = x. Thus the Metropolis algorithm

yields a series of dependent realizations forming a Markov chain with 7 as its equilibrium distributic
key observation is that the Metropolis algorithm only requires that n be defined up to the normal

i

constant, since the constant drops out in the ratio w(y*)/ m(x).

Tierney (1991) presents a number of suggestions for f(x, y). If f(x,,y) = f(y-x), then the ch
driven by a random — walk process. Possible candidates for f are the multivariate normal, multivariat
split t (with a small degrees of freedom). In situations where the multivariate t is used to ger

candidate values, one would center the normal or the t at the current state of the chain x, with the vari
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" covariance matrix possibly equal to some multiple of the inverse information at the posterior mode.

Muller (1991) discusses the choice of scale issue in detail. Besides presenting the .,_ifrange' of hybrid
strategies by cycling/ mixing different chains, Tiemey also (1991) pr’esents 'formal conditions for
~convergence, rates of convergence, and hrmtmg behavior of averages Gelfand (1992) presents an

-analogue to the Gibbs stopper for the Metropohs algonthm
A earliest generalization of the Meh‘opolis algorithm was due to Hastings (1970) which defines

a(x, y) = [min{1, x(y)a(y.x) / =(x)a0cy) }if waxy)>0
| 1T ) axy)=0

‘where q (x, y) is an arbitrary transition probability function. If q is symmetric i.e., q (x, y) = q (¥, X), as
~would be the case in using a multivariate normal ‘c>r_ multivariate t to drive the algorithm, then the Héstings
algonthm reduces to the Metropolis algorithm. Hastings (1970) [ considers the case where
q(x, y) = q (y), which is closely related to importance sampling. Tiei'ney (1991) calls this as independence
chams This form of acceptance probability is not unique éincg there may be many acceptance functions,
which provide a chain with the desired properties. However Peskun (1973) shbwed that-this form is

optimal in that suitable candidates are rejected less often and so efficiency is maximized.
‘Bayesian Inference using Simulation

Given a set of posterior simulation d;aws 91,;..,6N of a vector parameter 0, one can estimate the
posterior distribution of any quantity of interest. For example} with N=1000 simulation draws one can
estimate 2 95% posterior interval for any ﬁuﬁction (0, Y) of parameters and data by the 25™ largest and
975" largest simulated values of ¢(6", y), L = 1,...,1000. In some ‘problc:ms suéh as the normal linear
regression model random draws can be obtained from the posterior dié_tribution directly in one step
(Gclman et al 1995). In‘rother complicated cases such as normal linear regression model with unknown
tfi%ariance, the parameter vector can be partitioned into two sub vectofs 6» = :(91 i82) such that the posterior
&is&ibution of 64, p(61/y) and the conditional postenor distribution of 82 given 94, p(92191,y) are both

standard distributions from which simulations can easily be drawn.

, Many problems such as generalized linear models and hierarchical models direct simulation is not
possible even with two or more steps. Until recently these problems have been attacked by'approkimating
the desired posterior distributions by normal or transformed normal distributions from which direct

simulation can be drawn in recent years iterative simulation methods such as MCMC have been developed

e 1 3

- »



‘ S Markov Chain... P.Venkates
to draw from -general distributions without any direct need for normal approximation (Gelman

Rubin1996). The advantage of these iterative methods is that they can be setup with virtually any m
that can be setup in statistics. The main limitation is that they currently requi‘re extensive programr.
and debugging. In Bayesian posterior distribution, the goal of iterative simulation is the inference a
the target distribution and not merely some moments of the-target distribution. So it is desirable to chi
starting points that widely dispersed in the target distribution over dlspersed starting points are
important design feature of MCMC for two major reasons.

1. Startlng far apart can ‘make lack of convergence apparent
2. Starting over dlspersed can- ensure that all major reasons of the target distributions

represented in the simulation.

13

The chain of the class of models where MCMC is easy to use, assessing the convefgence, §
guidelines for starting values. Methods. assessing the behavior of the chain and useful softwares
extensively discussed by many authors.( e.g. Kass et al 1998,Spiega1halte; et al 1995,Cowles and C
1996, Gelman and Rubin 1992, Boscardin 1996, Gerlman 1996, Besag; and Green 1993, GejIer
Thompson 1995, Gelfand et al 1995,1996, Besag et al 1995 etc.) '

An Application to Medical Data.
We illustrate the appllcatlon of MCMC with a mixed model to data obtalned from patients w1th I
attack (PD). This application is complicated that Markov Chain simulation methods are the most effe

tool for exploring the posterior distribution .

Panic Attack Data

v In the experiment under study of 20 subjects — 10 controls (5 males and 5 females) an
patients (6 males and 4 females) had their ECG measured continuously for 60 beats. We ‘briefly re
the baéic statistical approach here. The R-R intervals at 60 beats on standing were compared for cor
and patients. The patieﬁts with PD showed a highly significant decrease in R-R variance upon star
from:supine posturé when compared to that of controls. During an induced panic a';tack with 5%

inhalating in PD patients, the R-R variance further decreased when compared to the levels befor
attack..
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- Finite mixture likelihood model '

. To address the problem the following basic model was fit. R-R variance of the controls is described by
random effect model in which the responses Yjj (i = 1, 2,...,20) of person J (i=1, 21,...,10) are normally
~distributed with distinct mean ajland common variance O'yz. To reflect the response of PD. patients
(j =11 to 20) are modeled as a two compartment‘rr‘lixtm.‘e Wlth probability':( 1 - &) for controls and R — R
 variance is normally distributed with mean oy and variance cy2 and with probab:ility A for R-R vaﬁance of
- the PD patients with mean a; -7 and the same '\}a_ria,nce qy2 who exhibits symptoms such as palpitation,
- swatting, dizziness, shortness of breath and other atomic symptoms (Bharathi et.al 1994). These are
g ,rgtu%ibuted to the dysfunction of both sympathetic and parasympathetic systems in fhése patients. |

‘;glijlrleierarchical Population Model | ,

‘The comparison -of the components o_f o = (o, o2, 03,. . ., 0O20) for PD patients verses controls
:‘”’;-addzesseé the ma-gnitude 6f decrease in cholinergic activity. We inclucie a hierarchical parameter B
-.-measuring the activity. Specifically variation among the individuals is modeled by having the means o;
":"“‘ifezﬂow a normal distribution with mean p for controls and p + B for PD patients with each distribution
havrng variance o4°. i.e., the mean of o; in the population distribution is p + BS; where S;is an indicator
 variable with 1 if the person j is PD and 0 otherwise. We followed the Bayesian model with an improper
umform prior distribution on the hyper parameters b= (Uyz, 0o, A, p,'-B,i' )as given by Gelman and
~ Rubin (1996). |

) gsterior Modes using Expectation Conditional Maximization (ECM) Algorithm
We draw 100 points at random frord the distribution and use each as a starting point for the ECM

algonthm to search for modes as given by Gelman and Rubin (1996). We also approximated the posterior
;:?vi'édis’nibution by a multivariate t distribution centered at the major mode of ECM with covariance matrix as
" the inverse of negative of the second derivative matrix of the log posterior'dénsity. We have drawn 1000
independent samples and importance resample a subset of 10, which was used as a starting point for
'ihdependent Gibbs samplers. '

| ,

The Table 1 displays the posterior inferences and potential scale reduction factor for selected

ameters after 50 iterations and 200 iterations. Aftei’ 200 iterations, the potential scale reduction factor

was approximately 1 for all parameters in the model. i
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Posterior quantlles and estimated potential scale reduction factors for parameters.

L ATﬂ‘b%fI.'
After 50 iterations ] After 200 iterations
. Parameter :
- 2.5% 50% 97.5% VYR 2.5% S50% 97.5% R
A 10.11 023 0.45 22 015 019 024 1.02

T 062 091 137 18 077 089 122"  1.00

B 023 045 067 14 1032 045 064 101

Piscussion

The exvisting MCMC methods provide a powerful statistical tool and have revolutionized Practi
Bayesian statistics over the past few years. The Abili"cy to fit complicated models with little programm
effort is in fact a key advantage of MCMC methods. The MCMC simulation should be undertaken ai
‘the problem has been approximated and explore using simple methods. Thére are a variety of methods
constructing efficient MCMC algorithms. However the implimentation of many of theée methods requ
some expertise. The main problem is ascertaining the proximity of the dlsmbutlon of any given Mar}
chain output to the target distribution. Even though the recent works focus on construction of samp

without this problem using exact samples. Considerable work is still needed on the implimentation issu
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