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  ABSTRACT 
Many clinical trials and other medical studies generate both longitudinal (repeated measurements) and 
survival (time to event) data. The existing methods are inappropriate when the longitudinal variable is 
correlated. Earlier articles proposed a joint model for longitudinal and survival data, obtaining maximum 
likelihood estimates via the EM algorithm based on Bayesian approach implementing via Markov Chain 
Monte Carlo (MCMC) methods. The longitudinal and survival responses are assumed independent given 
a linking latent bivariate Gaussian process and available covariates. We use the approach to jointly model 
the longitudinal and survival data from a clinical trial comparing treatments and also its interactions. The 
joint Bayesian approach appears to offer significantly improved and enhanced estimation of survival 
times and other parameters of interest like gender, age and weight. In spite of the complexity the model, 
we find it to be relatively straight forward to implement and understand using the WinBUGS software. 
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1. Introduction 

Many clinical trials and other medical studies generate both longitudinal (repeated measurements) and 
survival (time to event) data. In HIV clinical trials, one measures the number of CD4 cells per ml3 of 
blood (longitudinal) and time until death or disease progression (survival). The above two are obviously 
correlated (low CD4 is prognostic of poor survival outcome). Henderson et al. (2000) proposed an 
expectation-maximization (EM) algorithm to fit the joint model and also connect the longitudinal and 
survival processes with bivariate random effects following a latent bivariate Gaussian process,  Wang and 
Taylor (2001) include the longitudinal marker as a time-dependent covariate in the (proportional hazards) 
survival model. Lin et al. (2002) employ a latent class model of logistic model for each subject's class 
membership of longitudinal and survival processes are independent given this membership though 
marginally dependent. Wulfsohn and Tsiatis (1997) propose a joint likelihood model. They assume a 
proportional hazards model for survival conditional on the longitudinal marker. Guo and Carlin (2004) 
focused the fully Bayesian version of the joint modeling approach implemented via MCMC methods via 
the WinBUGS (Spiegelhalter, et al. 2003) package.  

2. Methods 

The parameters r1, r2 and r3 in the survival model measure the association between the two sub-
models induced by the random intercepts, slopes and fitted longitudinal value at the event time 
respectively. Let ijY  denote the jth CD4 count measurement on the ith patient in the trial, in,...,j 21=  

and m,...,i 21= . We include four explanatory variables as main effect in our analysis: Treatment, 
Gender, Age and Weight.  Our main goal is to analyze the association among Cd4 count, survival time, 
treatment group, gender, age, weight at baseline accounting for all relevant correlations and subject-
specific random effects.  We selected very vague prior distributions and we use proper priors, but with 
hyperparameter value chosen so that the prior will have minimal impact relative to the data. In the 
longitudinal sub-model we take multivariate normal and inverse gamma priors for the main effects vector 

( )1615141312111 βββββββ ,,,,,=  and the error variance 2εσ , similarly vague normal and inverse 

gamma priors for ( )25242322212 ββββββ ,,,,=  and 23σ  in the sub model. The parameters common 
for both models, we take a inverse Wishart( Carlin and Louis, 2000), which is again vague but does 
provide at least some shrinkage of random effects towards 0, ensuring good identifiability of the main 
effects( Carlin and Louis, 2000). The association parameters we choose normal prior for 321 γγγ ,,  those 
are quite vague relative to these parameters’ likely posterior magnitude. Our priors are chosen so that our 
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Bayesian analysis reproduces a corresponding likelihood analysis, but where likelihoods are re 
standardized and interpreted as probability distribution on the parameter. 

 It appears that a patient’s survival is related to two characteristics driving the patient’s 
longitudinal data pattern, namely the initial CD4 level and the rate of CD4 decrease. This is clinically 
reasonable, since high CD4 count represents better health status; patients with CD4 counts that are low or 
in more rapid decline would be expected to have poorer survival. 

3. Application to Tuberculosis Data  

The data used in this application consists of 229 cases of tuberculosis with HIV infected patients, 
admitted in randomized controlled clinical trial into two anti tuberculosis treatments; patient was assigned 
randomly to receive either of six months treatment or of nine months treatment according to their sputum 
grade as well as cd4 counts classification. The event of interest is sputum smear conversion (positive into 
negative) during treatment period. There are covariates considered here, CD4 counts were measured at 
study entry, and again at 6th and 12th   monthly visits. 

1. Age (in years)  
2. Sex  (i) Male -1  

(ii) Female -0 
3. Treatment group  (i) TreatmentA-1 

(ii) Treatment - 2 
4. Weight at baseline (in Kg) 
5. CD4 counts at three time points( Baseline, 6th month and 12th month) 

Time and status are also involved here. Event is coded as1 and censoring is coded as 0. 
Our Bayesian results for both separate and joint models are computed entirely in WinBUGS. The fully 
Bayesian version of joint modeling approach implemented based on the sampling chains of 5,000 
iterations each after 5000 burning. We followed the optimum of 35,000 iteration and the burning speed of 
119 seconds approximately to all stages of every 5,000 iteration. By default, WinBUGS assumes the 
parameter vector contains both fixed and random effects and provides the components for the two sub-
models (the terms in the log-likelihood arising from longitudinal and survival model components) to 
evaluate their relative contributions.   

Table 1 Separate Analysis and Joint analysis - WinBUGS 10000th iterations 
Separate Analysis Joint Analysis 

Longitudinal sub-models 

Parameter Posterior 
Mean 95% CI Posterior Mean 95% CI 

Intercept (β11) 
Time (β12) 

Time*Treat(β13) 
Gender (β14) 

Age (β15) 
Weight (β16) 

7.943 
-0.128 
-0.002 
-0.283 
0.017 
0.120 

3.44 - 2.56 
-0.35 - 0.09 
-0.29 - 0.01 
-1.24 - 0.69 
-0.07 - 0.10 
0.03 - 0.21 

7.929 
-0.139 
0.010 

-0.283 
0.017 
0.121 

3.40-12.53 
-0.35- 0.06 

-0.27- 0.3 
-1.21- 0.67 
-0.07-0.12 
0.03- 0.21 

Survival sub-models 

Parameter Posterior 
Mean 95% CI Posterior Mean 95% CI 

Intercept (β21) 
Treatment (β22) 

Gender (β23) 
Age (β24) 

Weight (β25) 
r1 
r2 
r3 

touz 

-0.673 
-0.033 
0.008 

-0.011 
0.002 
0.667 
1.411 

-0.673 
0.089 

-1.62 - 0.27 
-0.34 - 0.27 
-0.21 - 0.23 
-0.03 - 0.01 
-0.02 - 0.02 
0.14 - 1.17 
0.31 - 2.42 

-1.17 - (-1.53) 
0.07 - 0.12 

-0.663 
-0.035 
0.005 
-0.01 
0.002 
0.743 
1.562 

-0.750 
0.089 

-1.66-0.26 
-0.35-0.28 
-0.21-0.23 
-0.03-0.01 
-0.02-0.02 

0.32-1.3 
0.68-2.67 
-1.3-(-33) 
0.07-0.12 
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Table 2: Separate Analysis and Joint analysis - WinBUGS 50000th iterations 
Separate Analysis Joint Analysis 

Longitudinal sub-models 
Parameter Posterior Mean 95% CI Posterior Mean 95% CI 

Intercept (β11) 
Time (β12) 

Time*Treat(β13) 
Gender (β14) 

Age (β15) 
Weight (β16) 

7.691 
-0.054 
0.030 

-0.313 
0.020 
0.122 

3.08-12.26 
-0.33- 0.31 
-0.26- 0.33 
-1.28- 0.67 
-0.07- 0.11 
0.03- 0.21 

7.852 
-0.135 
0.005 

-0.296 
0.019 
0.121 

3.36-12.41 
-0.34-0.07 
0.28-0.29 

-1.27-0.68 
-0.07-0.11 
0.03-0.21 

Survival sub-models 
Intercept (β21) 

Treatment (β22) 
Gender (β23) 

Age (β24) 
Weight (β25) 

r1 
r2 
r3 

touz 

-0.717 
-0.039 
0.005 

-0.010 
0.002 
0.715 
1.499 

-0.353 
0.089 

-1.77- 0.29 
-0.36- 0.28 
-0.21- 0.23 
-0.03- 0.01 
-0.02- 0.02 
-0.79- 1.26 
-1.69- 2.56 
-1.26- 0.79 

0.07-0.12 

-0.666 
-0.035 
0.008 

-0.011 
0.002 
0.700 
1.470 

-0.703 
0.089 

-1.70-0.40 
-0.35-0.28 
-0.21-0.23 
-0.03-0.01 
-0.12-0.02 
0.25-1.33 
0.50-2.72 

-1.33-(-0.25) 
0.07-0.12 

 
The posterior estimates of the regression coefficients 1β  and 2β  and their 95%confidence 

intervals are summarized in Table 1 and 2 on different iterations.  Here the results from the separate and 
joint analyses are quite similar to each other. However, the posterior estimates of the association 
parameters in the joint analysis are significant and negative association from zero. Bayesian approach to 
longitudinal and survival responses of the joint model results differ much more noticeably from the 
separate model results also significantly increasing the survival time in each. Moreover, the joint model in 
reality reverses the separate models’ findings, in the sense that the patient with good CD4 direction is now 
predicted to survive much longer than the patient the poor direction. 

 The joint models considered here in fit using the WinBUGS, thus avoiding the need for complex 
EM programming and facilitating the models’ use in practice. The Weibull model with the shape 
parameter r following a gamma prior distribution for avoiding complexity by simply setting r=1. The 
estimation of the random effects via empirical Bayes, with associated standard errors was obtained by the 
delta method. Approximate 95% prediction intervals can be obtained by assuming asymptotic normality. 
The asymmetry of the posteriors suggests traditional confidence intervals based on asymptotic normality 
and approximate standard errors will not be very accurate.   
Figure 1: Densities 
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Figure 2: Time Series  
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4. Summary 

Bayesian approach seems both simpler and easier here. The Bayesian approach using MCMC for 
Separate and of Joint models using longitudinal and survival data is illustrated here. The joint models 
considered here in fit using the WinBUGS, thus avoiding the need for complex EM programming and 
facilitating the models’ use in practice. The Weibull model with the shape parameter r following a gamma 
prior distribution for avoiding complexity by simply setting r=1. The estimation of the random effects via 
empirical Bayes, with associated standard errors was obtained by the delta method. Approximate 95% 
prediction intervals can be obtained by assuming asymptotic normality. The asymmetry of the posteriors 
suggests traditional confidence intervals based on asymptotic normality and approximate standard errors 
will not be very accurate.  

However the joint analysis increases the estimated mean survival times moderately in both 
longitudinal sub-model and survival sub-model. This is due to the model’s accounting for the correlations 
between the longitudinal and survival data and the hypothetical patient has covariate value normally 
associated with a good prognosis, this is reflected in the dramatically improved predicted survival times. 
Moreover the findings of the patients good CD4 trajectory is now predicted to survive much longer than 
the patients with bad trajectory based on of joint model but it is actually reverse the findings of separate 
models. However, the asymmetry of the posteriors which are similar to the likelihood, due to vague priors, 
suggests traditional confidence intervals based on asymptotic normality and approximate standard errors 
will not be very accurate.  
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